Hmdb loader
Record Information
Version5.0
StatusDetected and Quantified
Creation Date2006-05-22 14:17:31 UTC
Update Date2020-11-09 23:16:22 UTC
HMDB IDHMDB0001999
Secondary Accession Numbers
  • HMDB01999
Metabolite Identification
Common NameEicosapentaenoic acid
DescriptionEicosapentaenoic acid (EPA or also icosapentaenoic acid) is an important polyunsaturated fatty acid found in fish oils. It serves as the precursor for the prostaglandin-3 and thromboxane-3 families. A diet rich in eicosapentaenoic acid lowers serum lipid concentration, reduces incidence of cardiovascular disorders, prevents platelet aggregation, and inhibits arachidonic acid conversion into the thromboxane-2 and prostaglandin-2 families. Eicosapentaenoic acid is an omega-3 fatty acid. In physiological literature, it is given the name 20:5(n-3). Its systematic chemical name is all-cis-5,8,11,14,17-icosapentaenoic acid. It also has the trivial name timnodonic acid. Chemically, EPA is a carboxylic acid with a 20-carbon chain and five cis double bonds; the first double bond is located at the third carbon from the omega end. Because of the presence of double bonds, EPS is a polyunsaturated fatty acid. Metabolically it acts as a precursor for prostaglandin-3 (which inhibits platelet aggregation), thromboxane-3, and leukotriene-5 groups. It is found in fish oils of cod liver, herring, mackerel, salmon, menhaden, and sardine. It is also found in human breast milk (Wikipedia ).
Structure
Data?1582752222
Synonyms
ValueSource
(5Z,8Z,11Z,14Z,17Z)-5,8,11,14,17-Eicosapentaenoic acidChEBI
(5Z,8Z,11Z,14Z,17Z)-EicosapentaenoateChEBI
(5Z,8Z,11Z,14Z,17Z)-Eicosapentaenoic acidChEBI
(5Z,8Z,11Z,14Z,17Z)-Icosapentaenoic acidChEBI
(all-Z)-5,8,11,14,17-Eicosapentaenoic acidChEBI
5,8,11,14,17-EICOSAPENTAENOIC ACIDChEBI
5,8,11,14,17-Icosapentaenoic acidChEBI
all-cis-5,8,11,14,17-Eicosapentaenoic acidChEBI
all-cis-Icosa-5,8,11,14,17-pentaenoic acidChEBI
cis, cis, cis, cis, cis-Eicosa-5,8,11,14,17-pentaenoic acidChEBI
cis-5,8,11,14,17-Eicosapentaenoic acidChEBI
cis-5,8,11,14,17-EPAChEBI
cis-Delta(5,8,11,14,17)-Eicosapentaenoic acidChEBI
EPAChEBI
IcosapentChEBI
Icosapentaenoic acidChEBI
IcosapentoChEBI
IcosapentumChEBI
Timnodonic acidChEBI
(5Z,8Z,11Z,14Z,17Z)-IcosapentaenoateKegg
5Z,8Z,11Z,14Z,17Z-Eicosapentaenoic acidKegg
(5Z,8Z,11Z,14Z,17Z)-Icosa-5,8,11,14,17-pentaenoic acidKegg
(5Z,8Z,11Z,14Z,17Z)-5,8,11,14,17-EicosapentaenoateGenerator
(all-Z)-5,8,11,14,17-EicosapentaenoateGenerator
5,8,11,14,17-EICOSAPENTAENOateGenerator
5,8,11,14,17-IcosapentaenoateGenerator
all-cis-5,8,11,14,17-EicosapentaenoateGenerator
all-cis-Icosa-5,8,11,14,17-pentaenoateGenerator
cis, cis, cis, cis, cis-Eicosa-5,8,11,14,17-pentaenoateGenerator
cis-5,8,11,14,17-EicosapentaenoateGenerator
cis-delta(5,8,11,14,17)-EicosapentaenoateGenerator
cis-Δ(5,8,11,14,17)-eicosapentaenoateGenerator
cis-Δ(5,8,11,14,17)-eicosapentaenoic acidGenerator
IcosapentaenoateGenerator
TimnodonateGenerator
5Z,8Z,11Z,14Z,17Z-EicosapentaenoateGenerator
(5Z,8Z,11Z,14Z,17Z)-Icosa-5,8,11,14,17-pentaenoateGenerator
EicosapentaenoateGenerator
Omega-3-eicosapentaenoic acidHMDB
Acid, eicosapentanoicHMDB
Eicosapentanoic acidHMDB
Omega 3 eicosapentaenoic acidHMDB
all-cis-IcosapentaenoateHMDB
all-cis-Icosapentaenoic acidHMDB
(5Z,8Z,11Z,14Z,17Z)-Eicosa-5,8,11,14,17-pentaenoic acidHMDB
(all-Z)-delta5,8,11,14,17-Eicosapentaenoic acidHMDB
(all-Z)-Δ5,8,11,14,17-eicosapentaenoic acidHMDB
(all-cis)-5,8,11,14,17-Eicosapentaenoic acidHMDB
FA(20:5(5Z,8Z,11Z,14Z,17Z))HMDB
FA(20:5n3)HMDB
Eicosapentaenoic acidHMDB
Chemical FormulaC20H30O2
Average Molecular Weight302.451
Monoisotopic Molecular Weight302.224580204
IUPAC Name(5Z,8Z,11Z,14Z,17Z)-icosa-5,8,11,14,17-pentaenoic acid
Traditional Nameeicosapentaenoic acid
CAS Registry Number10417-94-4
SMILES
CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O
InChI Identifier
InChI=1S/C20H30O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20(21)22/h3-4,6-7,9-10,12-13,15-16H,2,5,8,11,14,17-19H2,1H3,(H,21,22)/b4-3-,7-6-,10-9-,13-12-,16-15-
InChI KeyJAZBEHYOTPTENJ-JLNKQSITSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassFatty Acyls
Sub ClassFatty acids and conjugates
Direct ParentLong-chain fatty acids
Alternative Parents
Substituents
  • Long-chain fatty acid
  • Unsaturated fatty acid
  • Straight chain fatty acid
  • Monocarboxylic acid or derivatives
  • Carboxylic acid
  • Carboxylic acid derivative
  • Organic oxygen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Organooxygen compound
  • Carbonyl group
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Ontology
Physiological effectNot Available
Disposition
Biological locationSource
Process
Role
Physical Properties
StateLiquid
Experimental Molecular Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Experimental Chromatographic Properties

Experimental Collision Cross Sections

Adduct TypeData SourceCCS Value (Å2)Reference
[M-H]-MetCCS_train_neg178.53530932474
[M-H]-Not Available178.535http://allccs.zhulab.cn/database/detail?ID=AllCCS00000259
Predicted Molecular Properties
PropertyValueSource
Water Solubility0.00029 g/LALOGPS
logP6.53ALOGPS
logP6.23ChemAxon
logS-6ALOGPS
pKa (Strongest Acidic)4.82ChemAxon
Physiological Charge-1ChemAxon
Hydrogen Acceptor Count2ChemAxon
Hydrogen Donor Count1ChemAxon
Polar Surface Area37.3 ŲChemAxon
Rotatable Bond Count13ChemAxon
Refractivity101.07 m³·mol⁻¹ChemAxon
Polarizability35.93 ųChemAxon
Number of Rings0ChemAxon
BioavailabilityNoChemAxon
Rule of FiveNoChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
Predicted Chromatographic Properties

Predicted Collision Cross Sections

PredictorAdduct TypeCCS Value (Å2)Reference
DarkChem[M+H]+184.62331661259
DarkChem[M-H]-184.42831661259
DeepCCS[M+H]+181.90430932474
DeepCCS[M-H]-179.54630932474
DeepCCS[M-2H]-212.43230932474
DeepCCS[M+Na]+187.99730932474
AllCCS[M+H]+181.232859911
AllCCS[M+H-H2O]+178.132859911
AllCCS[M+NH4]+184.032859911
AllCCS[M+Na]+184.932859911
AllCCS[M-H]-180.432859911
AllCCS[M+Na-2H]-182.032859911
AllCCS[M+HCOO]-183.932859911

Predicted Kovats Retention Indices

Underivatized

MetaboliteSMILESKovats RI ValueColumn TypeReference
Eicosapentaenoic acidCC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O3845.0Standard polar33892256
Eicosapentaenoic acidCC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O2092.3Standard non polar33892256
Eicosapentaenoic acidCC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O2330.1Semi standard non polar33892256

Derivatized

Derivative Name / StructureSMILESKovats RI ValueColumn TypeReference
Eicosapentaenoic acid,1TMS,isomer #1CC/C=C\C/C=C\C/C=C\C/C=C\C/C=C\CCCC(=O)O[Si](C)(C)C2364.4Semi standard non polar33892256
Eicosapentaenoic acid,1TBDMS,isomer #1CC/C=C\C/C=C\C/C=C\C/C=C\C/C=C\CCCC(=O)O[Si](C)(C)C(C)(C)C2613.9Semi standard non polar33892256
Spectra

GC-MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Experimental GC-MSGC-MS Spectrum - Eicosapentaenoic acid GC-MS (1 TMS)splash10-004l-9700000000-09ea61ed836b882050282014-06-16HMDB team, MONA, MassBankView Spectrum
Experimental GC-MSGC-MS Spectrum - Eicosapentaenoic acid GC-MS (Non-derivatized)splash10-004l-9700000000-09ea61ed836b882050282017-09-12HMDB team, MONA, MassBankView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - Eicosapentaenoic acid GC-MS (Non-derivatized) - 70eV, Positivesplash10-004l-5490000000-ee15446245c5d0190ca22017-09-01Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - Eicosapentaenoic acid GC-MS (1 TMS) - 70eV, Positivesplash10-0adr-9462000000-6310373b498d395ee4b12017-10-06Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - Eicosapentaenoic acid GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12Wishart LabView Spectrum
MSMass Spectrum (Electron Ionization)splash10-05ox-9400000000-567226e93d65502352cd2015-03-01Not AvailableView Spectrum

MS/MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Experimental LC-MS/MSLC-MS/MS Spectrum - Eicosapentaenoic acid LC-ESI-QQ , negative-QTOFsplash10-0udi-0029000000-02c67e3601df249d24762017-09-14HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Eicosapentaenoic acid 10V, Positive-QTOFsplash10-0udi-0009000000-1f183f43649d7b5d2f922021-09-20HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Eicosapentaenoic acid 20V, Positive-QTOFsplash10-0udi-2987000000-6239462e49ad0240cfd92021-09-20HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Eicosapentaenoic acid 10V, Negative-QTOFsplash10-0udi-0009000000-028a784c6c5a01da151c2021-09-20HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Eicosapentaenoic acid 40V, Positive-QTOFsplash10-000x-9600000000-177a8f3f229d3ffe1c4f2021-09-20HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Eicosapentaenoic acid 20V, Negative-QTOFsplash10-0udi-0039000000-41dbbfbea0e69ff3303d2021-09-20HMDB team, MONAView Spectrum
Experimental LC-MS/MSLC-MS/MS Spectrum - Eicosapentaenoic acid 20V, Positive-QTOFsplash10-0udi-2988000000-6239462e49ad0240cfd92021-09-20HMDB team, MONAView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Eicosapentaenoic acid 10V, Positive-QTOFsplash10-0udr-1196000000-2fd0631ba34b61c028232016-06-03Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Eicosapentaenoic acid 20V, Positive-QTOFsplash10-0a4l-5891000000-6b514ce76e6321b59f492016-06-03Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Eicosapentaenoic acid 40V, Positive-QTOFsplash10-052f-8950000000-5f7ac71eb4fd77059c962016-06-03Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Eicosapentaenoic acid 10V, Negative-QTOFsplash10-0udi-0029000000-63f4108595227b77b5f02016-08-03Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Eicosapentaenoic acid 20V, Negative-QTOFsplash10-0zfr-2079000000-c196324eb61e1a26da902016-08-03Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Eicosapentaenoic acid 40V, Negative-QTOFsplash10-0a4i-9230000000-844643f720715a477b352016-08-03Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Eicosapentaenoic acid 10V, Negative-QTOFsplash10-0udi-0019000000-da419ae96bb8b07031de2021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Eicosapentaenoic acid 20V, Negative-QTOFsplash10-0ue9-2179000000-483c2cd6dc1d5799c3e42021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Eicosapentaenoic acid 40V, Negative-QTOFsplash10-0596-9530000000-b5f6ca6a7368abde88262021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Eicosapentaenoic acid 10V, Positive-QTOFsplash10-0f79-3985000000-f0a1f1db5a552a3146892021-09-23Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Eicosapentaenoic acid 20V, Positive-QTOFsplash10-001l-5910000000-a82843e1aa65987b4a172021-09-23Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Eicosapentaenoic acid 40V, Positive-QTOFsplash10-00l6-9600000000-da4dd030385c445969bc2021-09-23Wishart LabView Spectrum

NMR Spectra

Spectrum TypeDescriptionDeposition DateSourceView
Predicted 1D NMR13C NMR Spectrum (1D, 100 MHz, H2O, predicted)2022-08-23Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 100 MHz, H2O, predicted)2022-08-23Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 1000 MHz, H2O, predicted)2022-08-23Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 1000 MHz, H2O, predicted)2022-08-23Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 200 MHz, H2O, predicted)2022-08-23Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 200 MHz, H2O, predicted)2022-08-23Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 300 MHz, H2O, predicted)2022-08-23Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 300 MHz, H2O, predicted)2022-08-23Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 400 MHz, H2O, predicted)2022-08-23Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 400 MHz, H2O, predicted)2022-08-23Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 500 MHz, H2O, predicted)2022-08-23Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 500 MHz, H2O, predicted)2022-08-23Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 600 MHz, H2O, predicted)2022-08-23Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 600 MHz, H2O, predicted)2022-08-23Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 700 MHz, H2O, predicted)2022-08-23Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 700 MHz, H2O, predicted)2022-08-23Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 800 MHz, H2O, predicted)2022-08-23Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 800 MHz, H2O, predicted)2022-08-23Wishart LabView Spectrum
Predicted 1D NMR13C NMR Spectrum (1D, 900 MHz, H2O, predicted)2022-08-23Wishart LabView Spectrum
Predicted 1D NMR1H NMR Spectrum (1D, 900 MHz, H2O, predicted)2022-08-23Wishart LabView Spectrum
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane (predicted from logP)
Biospecimen Locations
  • Blood
  • Feces
  • Sweat
  • Urine
Tissue Locations
  • Adipose Tissue
  • Epidermis
  • Erythrocyte
  • Fibroblasts
  • Kidney
  • Leukocyte
  • Liver
  • Placenta
  • Platelet
  • Skeletal Muscle
Pathways
Normal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified0.435 +/- 0.010 uMAdult (>18 years old)BothNormal details
BloodDetected and Quantified2100.0 +/- 990.0 uMAdult (>18 years old)Male
Normal
details
BloodDetected and Quantified11.0 +/- 8.3 uMAdult (>18 years old)BothNormal details
BloodDetected and Quantified1.09 +/- 0.72 uMAdult (>18 years old)BothNormal details
BloodDetected and Quantified11.1 +/- 9.5 uMAdult (>18 years old)MaleNormal details
BloodDetected and Quantified10.8 +/- 6.2 uMAdult (>18 years old)Female
Normal
details
BloodDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Normal
details
BloodDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothNormal details
BloodDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Normal
details
BloodDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Female
Normal
details
BloodDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Female
Normal
details
BloodDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Female
Normal
details
BloodDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Female
Normal
details
BloodDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Female
Normal
details
BloodDetected and Quantified270 +/- 160 uMAdult (>18 years old)Male
Normal
details
BloodDetected and Quantified36.370 +/- 16.532 uMAdult (>18 years old)Male
Normal
details
BloodDetected and Quantified33.0632 +/- 9.919 uMAdult (>18 years old)Male
Normal
details
BloodDetected and Quantified23.144 +/- 9.919 uMAdult (>18 years old)Male
Normal
details
BloodDetected and Quantified0.00039 uMAdult (>18 years old)Both
Normal
details
BloodDetected and Quantified0.00058 uMAdult (>18 years old)Both
Normal
details
BloodDetected and Quantified0.00052 uMAdult (>18 years old)Both
Normal
details
BloodDetected and Quantified0.00073 uMAdult (>18 years old)Both
Normal
details
BloodDetected and Quantified19.838 +/- 9.919 uMAdult (>18 years old)Male
Normal
details
BloodDetected and Quantified37.890 +/- 24.764 uMAdult (>18 years old)BothNormal details
BloodDetected and Quantified66.457 +/- 42.321 uMAdult (>18 years old)BothNormal details
BloodDetected and Quantified70.425 +/- 48.603 uMAdult (>18 years old)BothNormal details
BloodDetected and Quantified260 +/- 110 uMAdult (>18 years old)FemaleNormal details
BloodDetected and Quantified79.649 +/- 51.182 uMAdult (>18 years old)FemaleNormal details
BloodDetected and Quantified200 +/- 110 uMAdult (>18 years old)MaleNormal details
BloodDetected and Quantified0.401 +/- 0.068 uMAdult (>18 years old)BothNormal details
BloodDetected and Quantified67.6 +/- 50.2 uMAdult (>18 years old)Not Specified
Normal
details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Normal
details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Normal
details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Normal
details
SweatDetected but not QuantifiedNot QuantifiedAdult BothNormal details
UrineExpected but not QuantifiedNot QuantifiedNot AvailableNot AvailableNormal
      Not Available
details
UrineDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothNormal details
Abnormal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified11.0 +/- 7.3 uMAdult (>18 years old)Both
Hypertension
details
BloodDetected and Quantified10.6 +/- 7.2 uMAdult (>18 years old)Male
Essential hypertension
details
BloodDetected and Quantified11.9 +/- 7.6 uMAdult (>18 years old)FemaleEssential hypertension details
BloodDetected and Quantified63.151 +/- 36.700 uMAdult (>18 years old)BothDepression details
BloodDetected and Quantified13.9 +/- 17.9 uMAdult (>18 years old)Not Specified
Isovaleric acidemia
details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Colorectal cancer
details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)Both
Colorectal cancer
details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothColorectal Cancer details
Associated Disorders and Diseases
Disease References
Hypertension
  1. Wang S, Ma A, Song S, Quan Q, Zhao X, Zheng X: Fasting serum free fatty acid composition, waist/hip ratio and insulin activity in essential hypertensive patients. Hypertens Res. 2008 Apr;31(4):623-32. doi: 10.1291/hypres.31.623. [PubMed:18633173 ]
Essential hypertension
  1. Wang S, Ma A, Song S, Quan Q, Zhao X, Zheng X: Fasting serum free fatty acid composition, waist/hip ratio and insulin activity in essential hypertensive patients. Hypertens Res. 2008 Apr;31(4):623-32. doi: 10.1291/hypres.31.623. [PubMed:18633173 ]
Major depressive disorder
  1. Sublette ME, Segal-Isaacson CJ, Cooper TB, Fekri S, Vanegas N, Galfalvy HC, Oquendo MA, Mann JJ: Validation of a food frequency questionnaire to assess intake of n-3 polyunsaturated fatty acids in subjects with and without major depressive disorder. J Am Diet Assoc. 2011 Jan;111(1):117-123.e1-2. doi: 10.1016/j.jada.2010.10.007. [PubMed:21185973 ]
Isovaleric acidemia
  1. Dercksen M, Kulik W, Mienie LJ, Reinecke CJ, Wanders RJ, Duran M: Polyunsaturated fatty acid status in treated isovaleric acidemia patients. Eur J Clin Nutr. 2016 Oct;70(10):1123-1126. doi: 10.1038/ejcn.2016.100. Epub 2016 Jun 22. [PubMed:27329611 ]
Colorectal cancer
  1. Brown DG, Rao S, Weir TL, O'Malia J, Bazan M, Brown RJ, Ryan EP: Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab. 2016 Jun 6;4:11. doi: 10.1186/s40170-016-0151-y. eCollection 2016. [PubMed:27275383 ]
  2. Sinha R, Ahn J, Sampson JN, Shi J, Yu G, Xiong X, Hayes RB, Goedert JJ: Fecal Microbiota, Fecal Metabolome, and Colorectal Cancer Interrelations. PLoS One. 2016 Mar 25;11(3):e0152126. doi: 10.1371/journal.pone.0152126. eCollection 2016. [PubMed:27015276 ]
  3. Goedert JJ, Sampson JN, Moore SC, Xiao Q, Xiong X, Hayes RB, Ahn J, Shi J, Sinha R: Fecal metabolomics: assay performance and association with colorectal cancer. Carcinogenesis. 2014 Sep;35(9):2089-96. doi: 10.1093/carcin/bgu131. Epub 2014 Jul 18. [PubMed:25037050 ]
Associated OMIM IDs
DrugBank IDDB00159
Phenol Explorer Compound IDNot Available
FooDB IDFDB030126
KNApSAcK IDC00001215
Chemspider ID393682
KEGG Compound IDC06428
BioCyc IDEICOSAPENTAENOATE
BiGG ID2218016
Wikipedia LinkEicosapentaenoic acid
METLIN ID6423
PubChem Compound446284
PDB IDNot Available
ChEBI ID28364
Food Biomarker OntologyNot Available
VMH IDTMNDNC
MarkerDB IDMDB00000363
Good Scents IDNot Available
References
Synthesis ReferenceSandri, Jacqueline; Viala, Jacques. Syntheses of all-(Z)-5,8,11,14,17-Eicosapentaenoic Acid and all-(Z)-4,7,10,13,16,19-Docosahexaenoic Acid from (Z)-1,1,6,6-tetraisopropoxy-3-hexene. Journal of Organic Chemistry (1995), 60(20), 6627-30.
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Hino K, Murakami Y, Nagai A, Kitase A, Hara Y, Furutani T, Ren F, Yamaguchi Y, Yutoku K, Yamashita S, Okuda M, Okita M, Okita K: Alpha-tocopherol [corrected] and ascorbic acid attenuates the ribavirin [corrected] induced decrease of eicosapentaenoic acid in erythrocyte membrane in chronic hepatitis C patients. J Gastroenterol Hepatol. 2006 Aug;21(8):1269-75. [PubMed:16872308 ]
  2. Francois CA, Connor SL, Bolewicz LC, Connor WE: Supplementing lactating women with flaxseed oil does not increase docosahexaenoic acid in their milk. Am J Clin Nutr. 2003 Jan;77(1):226-33. [PubMed:12499346 ]
  3. Hafstrom I, Ringertz B, Gyllenhammar H, Palmblad J, Harms-Ringdahl M: Effects of fasting on disease activity, neutrophil function, fatty acid composition, and leukotriene biosynthesis in patients with rheumatoid arthritis. Arthritis Rheum. 1988 May;31(5):585-92. [PubMed:2837251 ]
  4. Woodman RJ, Mori TA, Burke V, Puddey IB, Barden A, Watts GF, Beilin LJ: Effects of purified eicosapentaenoic acid and docosahexaenoic acid on platelet, fibrinolytic and vascular function in hypertensive type 2 diabetic patients. Atherosclerosis. 2003 Jan;166(1):85-93. [PubMed:12482554 ]
  5. Sipka S, Dey I, Buda C, Csongor J, Szegedi G, Farkas T: The mechanism of inhibitory effect of eicosapentaenoic acid on phagocytic activity and chemotaxis of human neutrophil granulocytes. Clin Immunol Immunopathol. 1996 Jun;79(3):224-8. [PubMed:8635279 ]
  6. Miwa H, Yamamoto M, Futata T, Kan K, Asano T: Thin-layer chromatography and high-performance liquid chromatography for the assay of fatty acid compositions of individual phospholipids in platelets from non-insulin-dependent diabetes mellitus patients: effect of eicosapentaenoic acid ethyl ester administration. J Chromatogr B Biomed Appl. 1996 Mar 3;677(2):217-23. [PubMed:8704924 ]
  7. Kim HH, Shin CM, Park CH, Kim KH, Cho KH, Eun HC, Chung JH: Eicosapentaenoic acid inhibits UV-induced MMP-1 expression in human dermal fibroblasts. J Lipid Res. 2005 Aug;46(8):1712-20. Epub 2005 Jun 1. [PubMed:15930517 ]
  8. Gillis RC, Daley BJ, Enderson BL, Karlstad MD: Eicosapentaenoic acid and gamma-linolenic acid induce apoptosis in HL-60 cells. J Surg Res. 2002 Sep;107(1):145-53. [PubMed:12384078 ]
  9. Takenaga M, Hirai A, Terano T, Tamura Y, Kitagawa H, Yoshida S: Comparison of the in vitro effect of eicosapentaenoic acid (EPA)-derived lipoxygenase metabolites on human platelet function with those of arachidonic acid. Thromb Res. 1986 Feb 1;41(3):373-84. [PubMed:3010490 ]
  10. Hereliuk VI: [The role of arachidonic and eicosapentaenoic acid lipoxygenase products in the pathogenesis of generalized parodontosis]. Fiziol Zh. 2000;46(6):112-5. [PubMed:11424554 ]
  11. Aas V, Rokling-Andersen MH, Kase ET, Thoresen GH, Rustan AC: Eicosapentaenoic acid (20:5 n-3) increases fatty acid and glucose uptake in cultured human skeletal muscle cells. J Lipid Res. 2006 Feb;47(2):366-74. Epub 2005 Nov 21. [PubMed:16301737 ]
  12. Kim HH, Cho S, Lee S, Kim KH, Cho KH, Eun HC, Chung JH: Photoprotective and anti-skin-aging effects of eicosapentaenoic acid in human skin in vivo. J Lipid Res. 2006 May;47(5):921-30. Epub 2006 Feb 7. [PubMed:16467281 ]
  13. Herrmann W, Beitz J: [Decreasing atherogenic risks by an eicosapentaenoic acid-rich diet]. Z Gesamte Inn Med. 1987 Mar 1;42(5):117-22. [PubMed:3035811 ]
  14. Ide T, Okamura T, Kumashiro R, Koga Y, Hino T, Hisamochi A, Ogata K, Tanaka K, Kuwahara R, Seki R, Sata M: A pilot study of eicosapentaenoic acid therapy for ribavirin-related anemia in patients with chronic hepatitis C. Int J Mol Med. 2003 Jun;11(6):729-32. [PubMed:12736713 ]
  15. Dunstan JA, Roper J, Mitoulas L, Hartmann PE, Simmer K, Prescott SL: The effect of supplementation with fish oil during pregnancy on breast milk immunoglobulin A, soluble CD14, cytokine levels and fatty acid composition. Clin Exp Allergy. 2004 Aug;34(8):1237-42. [PubMed:15298564 ]
  16. Luostarinen R, Saldeen T: Dietary fish oil decreases superoxide generation by human neutrophils: relation to cyclooxygenase pathway and lysosomal enzyme release. Prostaglandins Leukot Essent Fatty Acids. 1996 Sep;55(3):167-72. [PubMed:8931114 ]
  17. Calzada C, Vericel E, Lagarde M: Lower levels of lipid peroxidation in human platelets incubated with eicosapentaenoic acid. Biochim Biophys Acta. 1992 Jul 29;1127(2):147-52. [PubMed:1643099 ]
  18. Lagarde M, Croset M, Vericel E, Calzada C: Effects of small concentrations of eicosapentaenoic acid on platelets. J Intern Med Suppl. 1989;731:177-9. [PubMed:2539831 ]
  19. Bays HE, Ballantyne CM, Kastelein JJ, Isaacsohn JL, Braeckman RA, Soni PN: Eicosapentaenoic acid ethyl ester (AMR101) therapy in patients with very high triglyceride levels (from the Multi-center, plAcebo-controlled, Randomized, double-blINd, 12-week study with an open-label Extension [MARINE] trial). Am J Cardiol. 2011 Sep 1;108(5):682-90. doi: 10.1016/j.amjcard.2011.04.015. Epub 2011 Jun 16. [PubMed:21683321 ]
  20. Elshenawy S, Pinney SE, Stuart T, Doulias PT, Zura G, Parry S, Elovitz MA, Bennett MJ, Bansal A, Strauss JF 3rd, Ischiropoulos H, Simmons RA: The Metabolomic Signature of the Placenta in Spontaneous Preterm Birth. Int J Mol Sci. 2020 Feb 4;21(3). pii: ijms21031043. doi: 10.3390/ijms21031043. [PubMed:32033212 ]

Only showing the first 10 proteins. There are 16 proteins in total.

Enzymes

General function:
Involved in thiolester hydrolase activity
Specific function:
Involved in bile acid metabolism. In liver hepatocytes catalyzes the second step in the conjugation of C24 bile acids (choloneates) to glycine and taurine before excretion into bile canaliculi. The major components of bile are cholic acid and chenodeoxycholic acid. In a first step the bile acids are converted to an acyl-CoA thioester, either in peroxisomes (primary bile acids deriving from the cholesterol pathway), or cytoplasmic at the endoplasmic reticulum (secondary bile acids). May catalyze the conjugation of primary or secondary bile acids, or both. The conjugation increases the detergent properties of bile acids in the intestine, which facilitates lipid and fat-soluble vitamin absorption. In turn, bile acids are deconjugated by bacteria in the intestine and are recycled back to the liver for reconjugation (secondary bile acids). May also act as an acyl-CoA thioesterase that regulates intracellular levels of free fatty acids. In vitro, catalyzes the hydrolysis of long- and very long-chain saturated acyl-CoAs to the free fatty acid and coenzyme A (CoASH), and conjugates glycine to these acyl-CoAs.
Gene Name:
BAAT
Uniprot ID:
Q14032
Molecular weight:
46298.865
General function:
Involved in catalytic activity
Specific function:
Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially uses arachidonate and eicosapentaenoate as substrates.
Gene Name:
ACSL4
Uniprot ID:
O60488
Molecular weight:
74435.495
References
  1. Heimli H, Hollung K, Drevon CA: Eicosapentaenoic acid-induced apoptosis depends on acyl CoA-synthetase. Lipids. 2003 Mar;38(3):263-8. [PubMed:12784866 ]
  2. Covault J, Pettinati H, Moak D, Mueller T, Kranzler HR: Association of a long-chain fatty acid-CoA ligase 4 gene polymorphism with depression and with enhanced niacin-induced dermal erythema. Am J Med Genet B Neuropsychiatr Genet. 2004 May 15;127B(1):42-7. [PubMed:15108178 ]
General function:
Involved in catalytic activity
Specific function:
Acyl-CoA synthetases (ACSL) activates long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta-oxidation. ACSL3 mediates hepatic lipogenesis (By similarity). Preferentially uses myristate, laurate, arachidonate and eicosapentaenoate as substrates (By similarity). Has mainly an anabolic role in energy metabolism. Required for the incorporation of fatty acids into phosphatidylcholine, the major phospholipid located on the surface of VLDL (very low density lipoproteins).
Gene Name:
ACSL3
Uniprot ID:
O95573
Molecular weight:
80419.415
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [PubMed:17139284 ]
  2. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [PubMed:17016423 ]
General function:
Involved in peroxidase activity
Specific function:
Mediates the formation of prostaglandins from arachidonate. May have a role as a major mediator of inflammation and/or a role for prostanoid signaling in activity-dependent plasticity.
Gene Name:
PTGS2
Uniprot ID:
P35354
Molecular weight:
68995.625
References
  1. Lee JY, Plakidas A, Lee WH, Heikkinen A, Chanmugam P, Bray G, Hwang DH: Differential modulation of Toll-like receptors by fatty acids: preferential inhibition by n-3 polyunsaturated fatty acids. J Lipid Res. 2003 Mar;44(3):479-86. Epub 2002 Dec 1. [PubMed:12562875 ]
  2. Ait-Said F, Elalamy I, Werts C, Gomard MT, Jacquemin C, Couetil JP, Hatmi M: Inhibition by eicosapentaenoic acid of IL-1beta-induced PGHS-2 expression in human microvascular endothelial cells: involvement of lipoxygenase-derived metabolites and p38 MAPK pathway. Biochim Biophys Acta. 2003 Feb 20;1631(1):77-84. [PubMed:12573452 ]
  3. Machida T, Hiramatsu M, Hamaue N, Minami M, Hirafuji M: Docosahexaenoic acid enhances cyclooxygenase-2 induction by facilitating p44/42, but not p38, mitogen-activated protein kinase activation in rat vascular smooth muscle cells. J Pharmacol Sci. 2005 Sep;99(1):113-6. Epub 2005 Sep 1. [PubMed:16141635 ]
  4. Das UN: Can COX-2 inhibitor-induced increase in cardiovascular disease risk be modified by essential fatty acids? J Assoc Physicians India. 2005 Jul;53:623-7. [PubMed:16190133 ]
  5. Chene G, Dubourdeau M, Balard P, Escoubet-Lozach L, Orfila C, Berry A, Bernad J, Aries MF, Charveron M, Pipy B: n-3 and n-6 polyunsaturated fatty acids induce the expression of COX-2 via PPARgamma activation in human keratinocyte HaCaT cells. Biochim Biophys Acta. 2007 May;1771(5):576-89. Epub 2007 Mar 16. [PubMed:17459764 ]
  6. Vecchio AJ, Simmons DM, Malkowski MG: Structural basis of fatty acid substrate binding to cyclooxygenase-2. J Biol Chem. 2010 Jul 16;285(29):22152-63. doi: 10.1074/jbc.M110.119867. Epub 2010 May 12. [PubMed:20463020 ]
General function:
Involved in peroxidase activity
Specific function:
May play an important role in regulating or promoting cell proliferation in some normal and neoplastically transformed cells.
Gene Name:
PTGS1
Uniprot ID:
P23219
Molecular weight:
68685.82
References
  1. Malkowski MG, Thuresson ED, Lakkides KM, Rieke CJ, Micielli R, Smith WL, Garavito RM: Structure of eicosapentaenoic and linoleic acids in the cyclooxygenase site of prostaglandin endoperoxide H synthase-1. J Biol Chem. 2001 Oct 5;276(40):37547-55. Epub 2001 Jul 27. [PubMed:11477109 ]
  2. Machida T, Hiramatsu M, Hamaue N, Minami M, Hirafuji M: Docosahexaenoic acid enhances cyclooxygenase-2 induction by facilitating p44/42, but not p38, mitogen-activated protein kinase activation in rat vascular smooth muscle cells. J Pharmacol Sci. 2005 Sep;99(1):113-6. Epub 2005 Sep 1. [PubMed:16141635 ]
  3. Das UN: COX-2 inhibitors and metabolism of essential fatty acids. Med Sci Monit. 2005 Jul;11(7):RA233-7. Epub 2005 Jun 29. [PubMed:15990700 ]
  4. Das UN: Can COX-2 inhibitor-induced increase in cardiovascular disease risk be modified by essential fatty acids? J Assoc Physicians India. 2005 Jul;53:623-7. [PubMed:16190133 ]
  5. Yang P, Chan D, Felix E, Cartwright C, Menter DG, Madden T, Klein RD, Fischer SM, Newman RA: Formation and antiproliferative effect of prostaglandin E(3) from eicosapentaenoic acid in human lung cancer cells. J Lipid Res. 2004 Jun;45(6):1030-9. Epub 2004 Mar 1. [PubMed:14993240 ]
  6. Vecchio AJ, Simmons DM, Malkowski MG: Structural basis of fatty acid substrate binding to cyclooxygenase-2. J Biol Chem. 2010 Jul 16;285(29):22152-63. doi: 10.1074/jbc.M110.119867. Epub 2010 May 12. [PubMed:20463020 ]
  7. Lee JY, Plakidas A, Lee WH, Heikkinen A, Chanmugam P, Bray G, Hwang DH: Differential modulation of Toll-like receptors by fatty acids: preferential inhibition by n-3 polyunsaturated fatty acids. J Lipid Res. 2003 Mar;44(3):479-86. Epub 2002 Dec 1. [PubMed:12562875 ]
General function:
Lipid transport and metabolism
Specific function:
Acyl-CoA thioesterases are a group of enzymes that catalyze the hydrolysis of acyl-CoAs to the free fatty acid and coenzyme A (CoASH), providing the potential to regulate intracellular levels of acyl-CoAs, free fatty acids and CoASH. May play an important physiological function in brain. May play a regulatory role by modulating the cellular levels of fatty acyl-CoA ligands for certain transcription factors as well as the substrates for fatty acid metabolizing enzymes, contributing to lipid homeostasis. Has broad specificity, active towards fatty acyl-CoAs with chain-lengths of C8-C18. Has a maximal activity toward palmitoyl-CoA.
Gene Name:
ACOT7
Uniprot ID:
O00154
Molecular weight:
40454.945
Reactions
(5Z,8Z,11Z,14Z,17Z)-Icosapentaenoyl-CoA + Water → Coenzyme A + Eicosapentaenoic aciddetails
General function:
Involved in thiolester hydrolase activity
Specific function:
Acyl-CoA thioesterases are a group of enzymes that catalyze the hydrolysis of acyl-CoAs to the free fatty acid and coenzyme A (CoASH), providing the potential to regulate intracellular levels of acyl-CoAs, free fatty acids and CoASH. Displays high levels of activity on medium- and long chain acyl CoAs.
Gene Name:
ACOT2
Uniprot ID:
P49753
Molecular weight:
53218.02
Reactions
(5Z,8Z,11Z,14Z,17Z)-Icosapentaenoyl-CoA + Water → Coenzyme A + Eicosapentaenoic aciddetails
General function:
Involved in thiolester hydrolase activity
Specific function:
Acyl-CoA thioesterases are a group of enzymes that catalyze the hydrolysis of acyl-CoAs to the free fatty acid and coenzyme A (CoASH), providing the potential to regulate intracellular levels of acyl-CoAs, free fatty acids and CoASH (By similarity). Succinyl-CoA thioesterase that also hydrolyzes long chain saturated and unsaturated monocarboxylic acyl-CoAs.
Gene Name:
ACOT4
Uniprot ID:
Q8N9L9
Molecular weight:
46326.09
Reactions
(5Z,8Z,11Z,14Z,17Z)-Icosapentaenoyl-CoA + Water → Coenzyme A + Eicosapentaenoic aciddetails
General function:
Involved in acyl-CoA thioesterase activity
Specific function:
Acyl-CoA thioesterases are a group of enzymes that catalyze the hydrolysis of acyl-CoAs to the free fatty acid and coenzyme A (CoASH), providing the potential to regulate intracellular levels of acyl-CoAs, free fatty acids and CoASH. May mediate Nef-induced down-regulation of CD4. Major thioesterase in peroxisomes. Competes with BAAT (Bile acid CoA: amino acid N-acyltransferase) for bile acid-CoA substrate (such as chenodeoxycholoyl-CoA). Shows a preference for medium-length fatty acyl-CoAs (By similarity). May be involved in the metabolic regulation of peroxisome proliferation.
Gene Name:
ACOT8
Uniprot ID:
O14734
Molecular weight:
35914.02
General function:
Involved in G-protein coupled receptor protein signaling pathway
Specific function:
Receptor for medium and long chain saturated and unsaturated fatty acids. Binding of the ligand increase intracellular calcium concentration and amplify glucose-stimulated insulin secretion. The activity of this receptor is mediated by G- proteins that activate phospholipase C. Seems to act through a G(q) and G(i)-mediated pathway
Gene Name:
FFAR1
Uniprot ID:
O14842
Molecular weight:
31456.6
References
  1. Itoh Y, Hinuma S: GPR40, a free fatty acid receptor on pancreatic beta cells, regulates insulin secretion. Hepatol Res. 2005 Oct;33(2):171-3. Epub 2005 Oct 6. [PubMed:16214394 ]

Only showing the first 10 proteins. There are 16 proteins in total.