Hmdb loader
Record Information
Version5.0
StatusExpected but not Quantified
Creation Date2012-09-06 15:16:50 UTC
Update Date2022-03-07 02:51:43 UTC
HMDB IDHMDB0014710
Secondary Accession Numbers
  • HMDB14710
Metabolite Identification
Common NameVinblastine
DescriptionVinblastine, also known as VLB or lemblastine, belongs to the class of organic compounds known as glutamic acid and derivatives. Glutamic acid and derivatives are compounds containing glutamic acid or a derivative thereof resulting from reaction of glutamic acid at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. Vinblastine is a very strong basic compound (based on its pKa). Within humans, vinblastine participates in a number of enzymatic reactions. In particular, vinblastine can be converted into vinblastine; which is mediated by the enzyme multidrug resistance-associated protein 7. In addition, vinblastine can be converted into vinblastine; which is mediated by the enzyme multidrug resistance-associated protein 1. Metabolism of vinblastine has been shown to be mediated by hepatic cytochrome P450 3A isoenzymes. In humans, vinblastine is involved in vinblastine action pathway. Vinblastine is a potentially toxic compound. Route of Elimination: The major route of excretion may be through the biliary system. The antitumor activity of vinblastine is thought to be due primarily to inhibition of mitosis at metaphase through its interaction with tubulin.
Structure
Data?1582753212
Synonyms
ValueSource
(2ALPHA,2'BETA,3BETA,4ALPHA,5BETA)-VINCALEUKOBLASTINEChEBI
VLBChEBI
VinblastinaKegg
(2a,2'b,3b,4a,5b)-VINCALEUKOBLASTINEGenerator
(2Α,2'β,3β,4α,5β)-vincaleukoblastineGenerator
Gry brand OF vinblastine sulfateHMDB
Hexal brand OF vinblastine sulfateHMDB
Lilly brand OF vinblastine sulfateHMDB
VelbeHMDB
EG labo brand OF vinblastine sulfateHMDB
LemblastineHMDB
Vinblastinsulfat-gryHMDB
VincaleukoblastineHMDB
Faulding brand OF vinblastine sulfateHMDB
VelbanHMDB
Vinblastin hexalHMDB
Vinblastina lillyHMDB
Cell pharm brand OF vinblastine sulfateHMDB
Gastrozepin brand OF vinblastine sulfateHMDB
Lemery brand OF vinblastine sulfateHMDB
Sulfate, vinblastineHMDB
Vinblastine sulfateHMDB
CellblastinHMDB
Chemical FormulaC46H58N4O9
Average Molecular Weight810.9741
Monoisotopic Molecular Weight810.420379474
IUPAC Namemethyl (1R,9R,10S,11R,12R,19R)-11-(acetyloxy)-12-ethyl-4-[(13S,15S,17S)-17-ethyl-17-hydroxy-13-(methoxycarbonyl)-1,11-diazatetracyclo[13.3.1.0⁴,¹².0⁵,¹⁰]nonadeca-4(12),5,7,9-tetraen-13-yl]-10-hydroxy-5-methoxy-8-methyl-8,16-diazapentacyclo[10.6.1.0¹,⁹.0²,⁷.0¹⁶,¹⁹]nonadeca-2(7),3,5,13-tetraene-10-carboxylate
Traditional Namevinblastine
CAS Registry Number865-21-4
SMILES
[H][C@@]12N(C)C3=C(C=C(C(OC)=C3)[C@]3(C[C@@H]4CN(C[C@](O)(CC)C4)CCC4=C3NC3=CC=CC=C43)C(=O)OC)[C@@]11CCN3CC=C[C@@](CC)([C@@H](OC(C)=O)[C@]2(O)C(=O)OC)[C@@]13[H]
InChI Identifier
InChI=1S/C46H58N4O9/c1-8-42(54)23-28-24-45(40(52)57-6,36-30(15-19-49(25-28)26-42)29-13-10-11-14-33(29)47-36)32-21-31-34(22-35(32)56-5)48(4)38-44(31)17-20-50-18-12-16-43(9-2,37(44)50)39(59-27(3)51)46(38,55)41(53)58-7/h10-14,16,21-22,28,37-39,47,54-55H,8-9,15,17-20,23-26H2,1-7H3/t28-,37+,38-,39-,42+,43-,44-,45+,46+/m1/s1
InChI KeyJXLYSJRDGCGARV-XQKSVPLYSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as glutamic acid and derivatives. Glutamic acid and derivatives are compounds containing glutamic acid or a derivative thereof resulting from reaction of glutamic acid at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom.
KingdomOrganic compounds
Super ClassOrganic acids and derivatives
ClassCarboxylic acids and derivatives
Sub ClassAmino acids, peptides, and analogues
Direct ParentGlutamic acid and derivatives
Alternative Parents
Substituents
  • Glutamic acid or derivatives
  • Hippuric acid or derivatives
  • Hippuric acid
  • N-acyl-alpha-amino acid
  • N-acyl-alpha amino acid or derivatives
  • Aminobenzamide
  • Aminobenzoic acid or derivatives
  • Pteridine
  • Benzamide
  • Benzoic acid or derivatives
  • Benzoyl
  • Aniline or substituted anilines
  • Tertiary aliphatic/aromatic amine
  • Dialkylarylamine
  • Aminopyrimidine
  • Aralkylamine
  • Benzenoid
  • Pyrimidine
  • Pyrazine
  • Monocyclic benzene moiety
  • Dicarboxylic acid or derivatives
  • Heteroaromatic compound
  • Tertiary amine
  • Secondary carboxylic acid amide
  • Carboxamide group
  • Amino acid
  • Carboxylic acid
  • Organoheterocyclic compound
  • Azacycle
  • Organic oxygen compound
  • Primary amine
  • Carbonyl group
  • Amine
  • Organic oxide
  • Organic nitrogen compound
  • Organopnictogen compound
  • Hydrocarbon derivative
  • Organooxygen compound
  • Organonitrogen compound
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External Descriptors
Ontology
Physiological effectNot Available
Disposition
Process
RoleNot Available
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting Point267 °CNot Available
Boiling PointNot AvailableNot Available
Water Solubility0.017 g/LNot Available
LogP3.9Not Available
Experimental Chromatographic PropertiesNot Available
Predicted Molecular Properties
PropertyValueSource
Water Solubility0.017 g/LALOGPS
logP4.22ALOGPS
logP4.18ChemAxon
logS-4.7ALOGPS
pKa (Strongest Acidic)10.87ChemAxon
pKa (Strongest Basic)8.86ChemAxon
Physiological Charge2ChemAxon
Hydrogen Acceptor Count9ChemAxon
Hydrogen Donor Count3ChemAxon
Polar Surface Area154.1 ŲChemAxon
Rotatable Bond Count10ChemAxon
Refractivity222.42 m³·mol⁻¹ChemAxon
Polarizability87.3 ųChemAxon
Number of Rings9ChemAxon
BioavailabilityYesChemAxon
Rule of FiveNoChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleYesChemAxon
Predicted Chromatographic Properties

Predicted Collision Cross Sections

PredictorAdduct TypeCCS Value (Å2)Reference
DeepCCS[M-2H]-305.25630932474
DeepCCS[M+Na]+279.27530932474
AllCCS[M+H]+272.732859911
AllCCS[M+H-H2O]+272.232859911
AllCCS[M+NH4]+273.132859911
AllCCS[M+Na]+273.332859911
AllCCS[M-H]-244.332859911
AllCCS[M+Na-2H]-249.632859911
AllCCS[M+HCOO]-255.432859911

Predicted Kovats Retention Indices

Underivatized

MetaboliteSMILESKovats RI ValueColumn TypeReference
Vinblastine[H][C@@]12N(C)C3=C(C=C(C(OC)=C3)[C@]3(C[C@@H]4CN(C[C@](O)(CC)C4)CCC4=C3NC3=CC=CC=C43)C(=O)OC)[C@@]11CCN3CC=C[C@@](CC)([C@@H](OC(C)=O)[C@]2(O)C(=O)OC)[C@@]13[H]5265.1Standard polar33892256
Vinblastine[H][C@@]12N(C)C3=C(C=C(C(OC)=C3)[C@]3(C[C@@H]4CN(C[C@](O)(CC)C4)CCC4=C3NC3=CC=CC=C43)C(=O)OC)[C@@]11CCN3CC=C[C@@](CC)([C@@H](OC(C)=O)[C@]2(O)C(=O)OC)[C@@]13[H]4784.1Standard non polar33892256
Vinblastine[H][C@@]12N(C)C3=C(C=C(C(OC)=C3)[C@]3(C[C@@H]4CN(C[C@](O)(CC)C4)CCC4=C3NC3=CC=CC=C43)C(=O)OC)[C@@]11CCN3CC=C[C@@](CC)([C@@H](OC(C)=O)[C@]2(O)C(=O)OC)[C@@]13[H]5398.8Semi standard non polar33892256
Spectra

GC-MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Predicted GC-MSPredicted GC-MS Spectrum - Vinblastine GC-MS (TMS_1_1) - 70eV, PositiveNot Available2021-10-19Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - Vinblastine GC-MS (TMS_1_2) - 70eV, PositiveNot Available2021-10-19Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - Vinblastine GC-MS (TMS_1_3) - 70eV, PositiveNot Available2021-10-19Wishart LabView Spectrum

MS/MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Vinblastine 10V, Positive-QTOFsplash10-0ikc-0000000910-d1cb68f2685afb162acc2016-08-03Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Vinblastine 20V, Positive-QTOFsplash10-0uec-0000000900-d971ad5e4941780260272016-08-03Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Vinblastine 40V, Positive-QTOFsplash10-0006-2200003900-b38c610455defefb74ea2016-08-03Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Vinblastine 10V, Negative-QTOFsplash10-0a4i-2004000940-18f9743c5af790ad89f02016-08-03Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Vinblastine 20V, Negative-QTOFsplash10-052r-0009000200-0c81f1924aad5a0d02892016-08-03Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Vinblastine 40V, Negative-QTOFsplash10-0a4i-9015000800-316693e83321d70e44722016-08-03Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Vinblastine 10V, Positive-QTOFsplash10-03di-0000000290-e83796c88a86832b93fb2021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Vinblastine 20V, Positive-QTOFsplash10-03di-0000001960-9a6b45d6c00705963b0d2021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Vinblastine 40V, Positive-QTOFsplash10-02vs-0011303910-751b3b42b5bf5dec036b2021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Vinblastine 10V, Negative-QTOFsplash10-0a4i-4000004920-d63f7ed72412a0867d892021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Vinblastine 20V, Negative-QTOFsplash10-052f-8000009500-626405ba7c9cc4bdc9dc2021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - Vinblastine 40V, Negative-QTOFsplash10-0536-7050004900-0bad8ab21f2b471eb30f2021-09-22Wishart LabView Spectrum
Biological Properties
Cellular Locations
  • Cytoplasm
  • Membrane
Biospecimen Locations
  • Blood
  • Urine
Tissue LocationsNot Available
Pathways
Normal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodExpected but not QuantifiedNot QuantifiedNot AvailableNot AvailableTaking drug identified by DrugBank entry DB00570 details
UrineExpected but not QuantifiedNot QuantifiedNot AvailableNot AvailableTaking drug identified by DrugBank entry DB00570 details
Abnormal Concentrations
Not Available
Predicted Concentrations
BiospecimenValueOriginal ageOriginal sexOriginal conditionComments
Blood0.000 uMAdult (>18 years old)BothNormalPredicted based on drug qualities
Blood0.000 umol/mmol creatinineAdult (>18 years old)BothNormalPredicted based on drug qualities
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDNot Available
KNApSAcK IDC00001781
Chemspider ID211446
KEGG Compound IDC07201
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkVinblastine
METLIN IDNot Available
PubChem Compound241903
PDB IDNot Available
ChEBI ID27375
Food Biomarker OntologyNot Available
VMH IDNot Available
MarkerDB IDNot Available
Good Scents IDNot Available
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Starling D: Two ultrastructurally distinct tubulin paracrystals induced in sea-urchin eggs by vinblastine sulphate. J Cell Sci. 1976 Jan;20(1):79-89. [PubMed:942954 ]

Only showing the first 10 proteins. There are 11 proteins in total.

Enzymes

General function:
Involved in monooxygenase activity
Specific function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It performs a variety of oxidation reactions (e.g. caffeine 8-oxidation, omeprazole sulphoxidation, midazolam 1'-hydroxylation and midazolam 4-hydroxylation) of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. Acts as a 1,8-cineole 2-exo-monooxygenase. The enzyme also hydroxylates etoposide.
Gene Name:
CYP3A4
Uniprot ID:
P08684
Molecular weight:
57255.585
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. doi: 10.1093/nar/gkp970. Epub 2009 Nov 24. [PubMed:19934256 ]
  2. Ekins S, Bravi G, Wikel JH, Wrighton SA: Three-dimensional-quantitative structure activity relationship analysis of cytochrome P-450 3A4 substrates. J Pharmacol Exp Ther. 1999 Oct;291(1):424-33. [PubMed:10490933 ]
General function:
Involved in monooxygenase activity
Specific function:
Responsible for the metabolism of many drugs and environmental chemicals that it oxidizes. It is involved in the metabolism of drugs such as antiarrhythmics, adrenoceptor antagonists, and tricyclic antidepressants.
Gene Name:
CYP2D6
Uniprot ID:
P10635
Molecular weight:
55768.94
References
  1. Preissner S, Kroll K, Dunkel M, Senger C, Goldsobel G, Kuzman D, Guenther S, Winnenburg R, Schroeder M, Preissner R: SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Nucleic Acids Res. 2010 Jan;38(Database issue):D237-43. doi: 10.1093/nar/gkp970. Epub 2009 Nov 24. [PubMed:19934256 ]
General function:
Involved in sequence-specific DNA binding transcription factor activity
Specific function:
Transcription factor that recognizes and binds to the enhancer heptamer motif 5'-TGA[CG]TCA-3'
Gene Name:
JUN
Uniprot ID:
P05412
Molecular weight:
35675.3
References
  1. Brantley-Finley C, Lyle CS, Du L, Goodwin ME, Hall T, Szwedo D, Kaushal GP, Chambers TC: The JNK, ERK and p53 pathways play distinct roles in apoptosis mediated by the antitumor agents vinblastine, doxorubicin, and etoposide. Biochem Pharmacol. 2003 Aug 1;66(3):459-69. [PubMed:12907245 ]
  2. Bene A, Kurten RC, Chambers TC: Subcellular localization as a limiting factor for utilization of decoy oligonucleotides. Nucleic Acids Res. 2004 Oct 21;32(19):e142. [PubMed:15498923 ]
  3. Obey TB, Lyle CS, Chambers TC: Role of c-Jun in cellular sensitivity to the microtubule inhibitor vinblastine. Biochem Biophys Res Commun. 2005 Oct 7;335(4):1179-84. [PubMed:16111654 ]
  4. Martinez-Campa C, Casado P, Rodriguez R, Zuazua P, Garcia-Pedrero JM, Lazo PS, Ramos S: Effect of vinca alkaloids on ERalpha levels and estradiol-induced responses in MCF-7 cells. Breast Cancer Res Treat. 2006 Jul;98(1):81-9. Epub 2006 Mar 23. [PubMed:16555127 ]
  5. Duan L, Sterba K, Kolomeichuk S, Kim H, Brown PH, Chambers TC: Inducible overexpression of c-Jun in MCF7 cells causes resistance to vinblastine via inhibition of drug-induced apoptosis and senescence at a step subsequent to mitotic arrest. Biochem Pharmacol. 2007 Feb 15;73(4):481-90. Epub 2006 Oct 29. [PubMed:17126817 ]
General function:
Involved in structural molecule activity
Specific function:
Tubulin is the major constituent of microtubules. It binds two moles of GTP, one at an exchangeable site on the beta chain and one at a non-exchangeable site on the alpha-chain
Gene Name:
TUBB
Uniprot ID:
P07437
Molecular weight:
49670.5
References
  1. Jordan MA, Kamath K: How do microtubule-targeted drugs work? An overview. Curr Cancer Drug Targets. 2007 Dec;7(8):730-42. [PubMed:18220533 ]
  2. Correia JJ: Effects of antimitotic agents on tubulin-nucleotide interactions. Pharmacol Ther. 1991 Nov;52(2):127-47. [PubMed:1818332 ]
  3. Jordan A, Hadfield JA, Lawrence NJ, McGown AT: Tubulin as a target for anticancer drugs: agents which interact with the mitotic spindle. Med Res Rev. 1998 Jul;18(4):259-96. [PubMed:9664292 ]
  4. Islam MN, Iskander MN: Microtubulin binding sites as target for developing anticancer agents. Mini Rev Med Chem. 2004 Dec;4(10):1077-104. [PubMed:15579115 ]
  5. Gupta S, Bhattacharyya B: Antimicrotubular drugs binding to vinca domain of tubulin. Mol Cell Biochem. 2003 Nov;253(1-2):41-7. [PubMed:14619954 ]
General function:
Involved in structural molecule activity
Specific function:
Tubulin is the major constituent of microtubules. It binds two moles of GTP, one at an exchangeable site on the beta chain and one at a non-exchangeable site on the alpha-chain
Gene Name:
TUBA1A
Uniprot ID:
Q71U36
Molecular weight:
50135.2
References
  1. Jordan MA, Kamath K: How do microtubule-targeted drugs work? An overview. Curr Cancer Drug Targets. 2007 Dec;7(8):730-42. [PubMed:18220533 ]
  2. Correia JJ: Effects of antimitotic agents on tubulin-nucleotide interactions. Pharmacol Ther. 1991 Nov;52(2):127-47. [PubMed:1818332 ]
  3. Jordan A, Hadfield JA, Lawrence NJ, McGown AT: Tubulin as a target for anticancer drugs: agents which interact with the mitotic spindle. Med Res Rev. 1998 Jul;18(4):259-96. [PubMed:9664292 ]
  4. Islam MN, Iskander MN: Microtubulin binding sites as target for developing anticancer agents. Mini Rev Med Chem. 2004 Dec;4(10):1077-104. [PubMed:15579115 ]
  5. Gupta S, Bhattacharyya B: Antimicrotubular drugs binding to vinca domain of tubulin. Mol Cell Biochem. 2003 Nov;253(1-2):41-7. [PubMed:14619954 ]

Transporters

General function:
Involved in ATP binding
Specific function:
Mediates hepatobiliary excretion of numerous organic anions. May function as a cellular cisplatin transporter
Gene Name:
ABCC2
Uniprot ID:
Q92887
Molecular weight:
174205.6
References
  1. Schrenk D, Baus PR, Ermel N, Klein C, Vorderstemann B, Kauffmann HM: Up-regulation of transporters of the MRP family by drugs and toxins. Toxicol Lett. 2001 Mar 31;120(1-3):51-7. [PubMed:11323161 ]
  2. Chen C, Mireles RJ, Campbell SD, Lin J, Mills JB, Xu JJ, Smolarek TA: Differential interaction of 3-hydroxy-3-methylglutaryl-coa reductase inhibitors with ABCB1, ABCC2, and OATP1B1. Drug Metab Dispos. 2005 Apr;33(4):537-46. Epub 2004 Dec 22. [PubMed:15616150 ]
  3. Ishikawa T, Muller M, Klunemann C, Schaub T, Keppler D: ATP-dependent primary active transport of cysteinyl leukotrienes across liver canalicular membrane. Role of the ATP-dependent transport system for glutathione S-conjugates. J Biol Chem. 1990 Nov 5;265(31):19279-86. [PubMed:2172249 ]
  4. Tang F, Horie K, Borchardt RT: Are MDCK cells transfected with the human MRP2 gene a good model of the human intestinal mucosa? Pharm Res. 2002 Jun;19(6):773-9. [PubMed:12134946 ]
  5. Baltes S, Gastens AM, Fedrowitz M, Potschka H, Kaever V, Loscher W: Differences in the transport of the antiepileptic drugs phenytoin, levetiracetam and carbamazepine by human and mouse P-glycoprotein. Neuropharmacology. 2007 Feb;52(2):333-46. Epub 2006 Oct 10. [PubMed:17045309 ]
General function:
Involved in ATP binding
Specific function:
Mediates export of organic anions and drugs from the cytoplasm. Mediates ATP-dependent transport of glutathione and glutathione conjugates, leukotriene C4, estradiol-17-beta-o- glucuronide, methotrexate, antiviral drugs and other xenobiotics. Confers resistance to anticancer drugs. Hydrolyzes ATP with low efficiency
Gene Name:
ABCC1
Uniprot ID:
P33527
Molecular weight:
171589.5
References
  1. Schrenk D, Baus PR, Ermel N, Klein C, Vorderstemann B, Kauffmann HM: Up-regulation of transporters of the MRP family by drugs and toxins. Toxicol Lett. 2001 Mar 31;120(1-3):51-7. [PubMed:11323161 ]
  2. Loe DW, Almquist KC, Cole SP, Deeley RG: ATP-dependent 17 beta-estradiol 17-(beta-D-glucuronide) transport by multidrug resistance protein (MRP). Inhibition by cholestatic steroids. J Biol Chem. 1996 Apr 19;271(16):9683-9. [PubMed:8621644 ]
  3. Flanagan SD, Cummins CL, Susanto M, Liu X, Takahashi LH, Benet LZ: Comparison of furosemide and vinblastine secretion from cell lines overexpressing multidrug resistance protein (P-glycoprotein) and multidrug resistance-associated proteins (MRP1 and MRP2). Pharmacology. 2002;64(3):126-34. [PubMed:11834888 ]
  4. Yildiz M, Celik-Ozenci C, Akan S, Akan I, Sati L, Demir R, Savas B, Ozben T, Samur M, Ozdogan M, Artac M, Bozcuk H: Zoledronic acid is synergic with vinblastine to induce apoptosis in a multidrug resistance protein-1 dependent way: an in vitro study. Cell Biol Int. 2006 Mar;30(3):278-82. Epub 2006 Feb 2. [PubMed:16458542 ]
General function:
Involved in ATP binding
Specific function:
May participate directly in the active transport of drugs into subcellular organelles or influence drug distribution indirectly. Transports glutathione conjugates as leukotriene-c4 (LTC4) and N-ethylmaleimide S-glutathione (NEM-GS)
Gene Name:
ABCC6
Uniprot ID:
O95255
Molecular weight:
164904.8
References
  1. Cai J, Daoud R, Alqawi O, Georges E, Pelletier J, Gros P: Nucleotide binding and nucleotide hydrolysis properties of the ABC transporter MRP6 (ABCC6). Biochemistry. 2002 Jun 25;41(25):8058-67. [PubMed:12069597 ]
General function:
Involved in ATP binding
Specific function:
Involved in the ATP-dependent secretion of bile salts into the canaliculus of hepatocytes
Gene Name:
ABCB11
Uniprot ID:
O95342
Molecular weight:
146405.8
References
  1. Wang EJ, Casciano CN, Clement RP, Johnson WW: Fluorescent substrates of sister-P-glycoprotein (BSEP) evaluated as markers of active transport and inhibition: evidence for contingent unequal binding sites. Pharm Res. 2003 Apr;20(4):537-44. [PubMed:12739759 ]
  2. Lecureur V, Sun D, Hargrove P, Schuetz EG, Kim RB, Lan LB, Schuetz JD: Cloning and expression of murine sister of P-glycoprotein reveals a more discriminating transporter than MDR1/P-glycoprotein. Mol Pharmacol. 2000 Jan;57(1):24-35. [PubMed:10617675 ]
General function:
Involved in ATP binding
Specific function:
Energy-dependent efflux pump responsible for decreased drug accumulation in multidrug-resistant cells
Gene Name:
ABCB1
Uniprot ID:
P08183
Molecular weight:
141477.3
References
  1. Arora A, Shukla Y: Modulation of vinca-alkaloid induced P-glycoprotein expression by indole-3-carbinol. Cancer Lett. 2003 Jan 28;189(2):167-73. [PubMed:12490309 ]
  2. Gao J, Murase O, Schowen RL, Aube J, Borchardt RT: A functional assay for quantitation of the apparent affinities of ligands of P-glycoprotein in Caco-2 cells. Pharm Res. 2001 Feb;18(2):171-6. [PubMed:11405287 ]
  3. Wang EJ, Casciano CN, Clement RP, Johnson WW: Active transport of fluorescent P-glycoprotein substrates: evaluation as markers and interaction with inhibitors. Biochem Biophys Res Commun. 2001 Nov 30;289(2):580-5. [PubMed:11716514 ]
  4. Tang F, Horie K, Borchardt RT: Are MDCK cells transfected with the human MDR1 gene a good model of the human intestinal mucosa? Pharm Res. 2002 Jun;19(6):765-72. [PubMed:12134945 ]
  5. Horie K, Tang F, Borchardt RT: Isolation and characterization of Caco-2 subclones expressing high levels of multidrug resistance protein efflux transporter. Pharm Res. 2003 Feb;20(2):161-8. [PubMed:12636153 ]
  6. Schwab D, Fischer H, Tabatabaei A, Poli S, Huwyler J: Comparison of in vitro P-glycoprotein screening assays: recommendations for their use in drug discovery. J Med Chem. 2003 Apr 24;46(9):1716-25. [PubMed:12699389 ]
  7. Tanigawara Y, Okamura N, Hirai M, Yasuhara M, Ueda K, Kioka N, Komano T, Hori R: Transport of digoxin by human P-glycoprotein expressed in a porcine kidney epithelial cell line (LLC-PK1). J Pharmacol Exp Ther. 1992 Nov;263(2):840-5. [PubMed:1359120 ]
  8. Tiberghien F, Loor F: Ranking of P-glycoprotein substrates and inhibitors by a calcein-AM fluorometry screening assay. Anticancer Drugs. 1996 Jul;7(5):568-78. [PubMed:8862725 ]
  9. Pouliot JF, L'Heureux F, Liu Z, Prichard RK, Georges E: Reversal of P-glycoprotein-associated multidrug resistance by ivermectin. Biochem Pharmacol. 1997 Jan 10;53(1):17-25. [PubMed:8960059 ]
  10. Smit JW, Weert B, Schinkel AH, Meijer DK: Heterologous expression of various P-glycoproteins in polarized epithelial cells induces directional transport of small (type 1) and bulky (type 2) cationic drugs. J Pharmacol Exp Ther. 1998 Jul;286(1):321-7. [PubMed:9655875 ]
  11. Shepard RL, Winter MA, Hsaio SC, Pearce HL, Beck WT, Dantzig AH: Effect of modulators on the ATPase activity and vanadate nucleotide trapping of human P-glycoprotein. Biochem Pharmacol. 1998 Sep 15;56(6):719-27. [PubMed:9751076 ]
  12. Golstein PE, Boom A, van Geffel J, Jacobs P, Masereel B, Beauwens R: P-glycoprotein inhibition by glibenclamide and related compounds. Pflugers Arch. 1999 Apr;437(5):652-60. [PubMed:10087141 ]
  13. Takara K, Tanigawara Y, Komada F, Nishiguchi K, Sakaeda T, Okumura K: Cellular pharmacokinetic aspects of reversal effect of itraconazole on P-glycoprotein-mediated resistance of anticancer drugs. Biol Pharm Bull. 1999 Dec;22(12):1355-9. [PubMed:10746169 ]
  14. Nagy H, Goda K, Fenyvesi F, Bacso Z, Szilasi M, Kappelmayer J, Lustyik G, Cianfriglia M, Szabo G Jr: Distinct groups of multidrug resistance modulating agents are distinguished by competition of P-glycoprotein-specific antibodies. Biochem Biophys Res Commun. 2004 Mar 19;315(4):942-9. [PubMed:14985103 ]
  15. Chen C, Mireles RJ, Campbell SD, Lin J, Mills JB, Xu JJ, Smolarek TA: Differential interaction of 3-hydroxy-3-methylglutaryl-coa reductase inhibitors with ABCB1, ABCC2, and OATP1B1. Drug Metab Dispos. 2005 Apr;33(4):537-46. Epub 2004 Dec 22. [PubMed:15616150 ]
  16. Yamazaki M, Neway WE, Ohe T, Chen I, Rowe JF, Hochman JH, Chiba M, Lin JH: In vitro substrate identification studies for p-glycoprotein-mediated transport: species difference and predictability of in vivo results. J Pharmacol Exp Ther. 2001 Mar;296(3):723-35. [PubMed:11181899 ]
  17. Adachi Y, Suzuki H, Sugiyama Y: Comparative studies on in vitro methods for evaluating in vivo function of MDR1 P-glycoprotein. Pharm Res. 2001 Dec;18(12):1660-8. [PubMed:11785684 ]
  18. Kumar S, Kwei GY, Poon GK, Iliff SA, Wang Y, Chen Q, Franklin RB, Didolkar V, Wang RW, Yamazaki M, Chiu SH, Lin JH, Pearson PG, Baillie TA: Pharmacokinetics and interactions of a novel antagonist of chemokine receptor 5 (CCR5) with ritonavir in rats and monkeys: role of CYP3A and P-glycoprotein. J Pharmacol Exp Ther. 2003 Mar;304(3):1161-71. [PubMed:12604693 ]
  19. Atkinson DE, Greenwood SL, Sibley CP, Glazier JD, Fairbairn LJ: Role of MDR1 and MRP1 in trophoblast cells, elucidated using retroviral gene transfer. Am J Physiol Cell Physiol. 2003 Sep;285(3):C584-91. Epub 2003 Apr 30. [PubMed:12724138 ]
  20. Troutman MD, Thakker DR: Novel experimental parameters to quantify the modulation of absorptive and secretory transport of compounds by P-glycoprotein in cell culture models of intestinal epithelium. Pharm Res. 2003 Aug;20(8):1210-24. [PubMed:12948019 ]
  21. Dagenais C, Graff CL, Pollack GM: Variable modulation of opioid brain uptake by P-glycoprotein in mice. Biochem Pharmacol. 2004 Jan 15;67(2):269-76. [PubMed:14698039 ]
  22. Taipalensuu J, Tavelin S, Lazorova L, Svensson AC, Artursson P: Exploring the quantitative relationship between the level of MDR1 transcript, protein and function using digoxin as a marker of MDR1-dependent drug efflux activity. Eur J Pharm Sci. 2004 Jan;21(1):69-75. [PubMed:14706813 ]
  23. Hunter J, Hirst BH, Simmons NL: Drug absorption limited by P-glycoprotein-mediated secretory drug transport in human intestinal epithelial Caco-2 cell layers. Pharm Res. 1993 May;10(5):743-9. [PubMed:8100632 ]
  24. Borgnia MJ, Eytan GD, Assaraf YG: Competition of hydrophobic peptides, cytotoxic drugs, and chemosensitizers on a common P-glycoprotein pharmacophore as revealed by its ATPase activity. J Biol Chem. 1996 Feb 9;271(6):3163-71. [PubMed:8621716 ]
  25. Dantzig AH, Shepard RL, Law KL, Tabas L, Pratt S, Gillespie JS, Binkley SN, Kuhfeld MT, Starling JJ, Wrighton SA: Selectivity of the multidrug resistance modulator, LY335979, for P-glycoprotein and effect on cytochrome P-450 activities. J Pharmacol Exp Ther. 1999 Aug;290(2):854-62. [PubMed:10411602 ]
  26. Lecureur V, Sun D, Hargrove P, Schuetz EG, Kim RB, Lan LB, Schuetz JD: Cloning and expression of murine sister of P-glycoprotein reveals a more discriminating transporter than MDR1/P-glycoprotein. Mol Pharmacol. 2000 Jan;57(1):24-35. [PubMed:10617675 ]
  27. Fedoruk MN, Gimenez-Bonafe P, Guns ES, Mayer LD, Nelson CC: P-glycoprotein increases the efflux of the androgen dihydrotestosterone and reduces androgen responsive gene activity in prostate tumor cells. Prostate. 2004 Apr 1;59(1):77-90. [PubMed:14991868 ]
  28. Takara K, Sakaeda T, Kakumoto M, Tanigawara Y, Kobayashi H, Okumura K, Ohnishi N, Yokoyama T: Effects of alpha-adrenoceptor antagonist doxazosin on MDR1-mediated multidrug resistance and transcellular transport. Oncol Res. 2009;17(11-12):527-33. [PubMed:19806783 ]
  29. Jutabha P, Wempe MF, Anzai N, Otomo J, Kadota T, Endou H: Xenopus laevis oocytes expressing human P-glycoprotein: probing trans- and cis-inhibitory effects on [3H]vinblastine and [3H]digoxin efflux. Pharmacol Res. 2010 Jan;61(1):76-84. doi: 10.1016/j.phrs.2009.07.002. Epub 2009 Jul 21. [PubMed:19631272 ]
  30. Kugawa F, Suzuki T, Miyata M, Tomono K, Tamanoi F: Construction of a model cell line for the assay of MDR1 (multi drug resistance gene-1) substrates/inhibitors using HeLa cells. Pharmazie. 2009 May;64(5):296-300. [PubMed:19530439 ]
  31. Woodahl EL, Crouthamel MH, Bui T, Shen DD, Ho RJ: MDR1 (ABCB1) G1199A (Ser400Asn) polymorphism alters transepithelial permeability and sensitivity to anticancer agents. Cancer Chemother Pharmacol. 2009 Jun;64(1):183-8. doi: 10.1007/s00280-008-0906-4. Epub 2009 Jan 4. [PubMed:19123050 ]
  32. Ekins S, Kim RB, Leake BF, Dantzig AH, Schuetz EG, Lan LB, Yasuda K, Shepard RL, Winter MA, Schuetz JD, Wikel JH, Wrighton SA: Application of three-dimensional quantitative structure-activity relationships of P-glycoprotein inhibitors and substrates. Mol Pharmacol. 2002 May;61(5):974-81. [PubMed:11961114 ]
  33. Takara K, Sakaeda T, Yagami T, Kobayashi H, Ohmoto N, Horinouchi M, Nishiguchi K, Okumura K: Cytotoxic effects of 27 anticancer drugs in HeLa and MDR1-overexpressing derivative cell lines. Biol Pharm Bull. 2002 Jun;25(6):771-8. [PubMed:12081145 ]
  34. Henning U, Loffler S, Krieger K, Klimke A: Uptake of clozapine into HL-60 promyelocytic leukaemia cells. Pharmacopsychiatry. 2002 May;35(3):90-5. [PubMed:12107852 ]
  35. Tang F, Horie K, Borchardt RT: Are MDCK cells transfected with the human MRP2 gene a good model of the human intestinal mucosa? Pharm Res. 2002 Jun;19(6):773-9. [PubMed:12134946 ]
  36. Yasuda K, Lan LB, Sanglard D, Furuya K, Schuetz JD, Schuetz EG: Interaction of cytochrome P450 3A inhibitors with P-glycoprotein. J Pharmacol Exp Ther. 2002 Oct;303(1):323-32. [PubMed:12235267 ]
General function:
Involved in ion transmembrane transporter activity
Specific function:
Mediates tubular uptake of organic compounds from circulation. Mediates the influx of agmatine, dopamine, noradrenaline (norepinephrine), serotonin, choline, famotidine, ranitidine, histamin, creatinine, amantadine, memantine, acriflavine, 4-[4-(dimethylamino)-styryl]-N-methylpyridinium ASP, amiloride, metformin, N-1-methylnicotinamide (NMN), tetraethylammonium (TEA), 1-methyl-4-phenylpyridinium (MPP), cimetidine, cisplatin and oxaliplatin. Cisplatin may develop a nephrotoxic action. Transport of creatinine is inhibited by fluoroquinolones such as DX-619 and LVFX. This transporter is a major determinant of the anticancer activity of oxaliplatin and may contribute to antitumor specificity
Gene Name:
SLC22A2
Uniprot ID:
O15244
Molecular weight:
62564.0
References
  1. Pan BF, Sweet DH, Pritchard JB, Chen R, Nelson JA: A transfected cell model for the renal toxin transporter, rOCT2. Toxicol Sci. 1999 Feb;47(2):181-6. [PubMed:10220855 ]

Only showing the first 10 proteins. There are 11 proteins in total.