Record Information |
---|
Version | 5.0 |
---|
Status | Detected and Quantified |
---|
Creation Date | 2005-11-16 15:48:42 UTC |
---|
Update Date | 2023-05-30 20:55:59 UTC |
---|
HMDB ID | HMDB0000929 |
---|
Secondary Accession Numbers | |
---|
Metabolite Identification |
---|
Common Name | L-Tryptophan |
---|
Description | Tryptophan (Trp) or L-tryptophan is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (-NH2) and carboxyl (-COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-tryptophan is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Tryptophan is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aromatic amino acid. Tryptophan is an essential amino acid, meaning the body cannot synthesize it, and it must be obtained from the diet. The requirement for tryptophan and protein decreases with age. The minimum daily requirement for adults is 3 mg/kg/day or about 200 mg a day. There is 400 mg of tryptophan in a cup of wheat germ. A cup of low-fat cottage cheese contains 300 mg of tryptophan and chicken and turkey contain up to 600 mg of tryptophan per pound (http://www.dcnutrition.com). Tryptophan is particularly plentiful in chocolate, oats, dried dates, milk, yogurt, cottage cheese, red meat, eggs, fish, poultry, sesame, chickpeas, almonds, sunflower seeds, pumpkin seeds, buckwheat, spirulina, and peanuts. Tryptophan is the precursor of both serotonin and melatonin. Melatonin is a hormone that is produced by the pineal gland in animals, which regulates sleep and wakefulness. Serotonin is a brain neurotransmitter, platelet clotting factor, and neurohormone found in organs throughout the body. Metabolism of tryptophan into serotonin requires nutrients such as vitamin B6, niacin, and glutathione. Niacin (also known as vitamin B3) is an important metabolite of tryptophan. It is synthesized via kynurenine and quinolinic acids, which are products of tryptophan degradation. There are a number of conditions or diseases that are characterized by tryptophan deficiencies. For instance, fructose malabsorption causes improper absorption of tryptophan in the intestine, which reduces levels of tryptophan in the blood and leads to depression. High corn diets or other tryptophan-deficient diets can cause pellagra, which is a niacin-tryptophan deficiency disease with symptoms of dermatitis, diarrhea, and dementia. Hartnup's disease is a disorder in which tryptophan and other amino acids are not absorbed properly. Symptoms of Hartnup's disease include skin rashes, difficulty coordinating movements (cerebellar ataxia), and psychiatric symptoms such as depression or psychosis. Tryptophan supplements may be useful for treating Hartnup's disease. Assessment of tryptophan deficiency is done through studying excretion of tryptophan metabolites in the urine or blood. Blood may be the most sensitive test because the amino acid tryptophan is transported in a unique way. Increased urination of tryptophan breakdown products (such as kynurenine) correlates with increased tryptophan degradation, which occurs with oral contraception, depression, mental retardation, hypertension, and anxiety states. Tryptophan plays a role in "feast-induced" drowsiness. Ingestion of a meal rich in carbohydrates triggers the release of insulin. Insulin, in turn, stimulates the uptake of large neutral branched-chain amino acids (BCAAs) into muscle, increasing the ratio of tryptophan to BCAA in the bloodstream. The increased tryptophan ratio reduces competition at the large neutral amino acid transporter (which transports both BCAAs and tryptophan), resulting in greater uptake of tryptophan across the blood-brain barrier into the cerebrospinal fluid (CSF). Once in the CSF, tryptophan is converted into serotonin and the resulting serotonin is further metabolized into melatonin by the pineal gland, which promotes sleep. Because tryptophan is converted into 5-hydroxytryptophan (5-HTP) which is then converted into the neurotransmitter serotonin, it has been proposed that consumption of tryptophan or 5-HTP may improve depression symptoms by increasing the level of serotonin in the brain. Tryptophan is sold over the counter in the United States (after being banned to varying extents between 1989 and 2005) and the United Kingdom as a dietary supplement for use as an antidepressant, anxiolytic, and sleep aid. It is also marketed as a prescription drug in some European countries for the treatment of major depression. There is evidence that blood tryptophan levels are unlikely to be altered by changing the diet, but consuming purified tryptophan increases the serotonin level in the brain, whereas eating foods containing tryptophan does not. This is because the transport system that brings tryptophan across the blood-brain barrier also transports other amino acids which are contained in protein food sources. Under certain situations, tryptophan can be a neurotoxin and a metabotoxin. A neurotoxin is a compound that causes damage to the brain and nerve tissues. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of tryptophan can be found in glutaric aciduria type I (glutaric acidemia type I or GA1). GA1 is an inherited disorder in which the body is unable to completely break down the amino acids lysine, hydroxylysine, and tryptophan due to a deficiency of mitochondrial glutaryl-CoA dehydrogenase (EC 1.3.99.7, GCDH). Excessive levels of their intermediate breakdown products (e.g. glutaric acid, glutaryl-CoA, 3-hydroxyglutaric acid, glutaconic acid) can accumulate and cause damage to the brain (and also other organs), but particularly the basal ganglia. Babies with glutaric acidemia type I are often born with unusually large heads (macrocephaly). Other symptoms include spasticity (increased muscle tone/stiffness) and dystonia (involuntary muscle contractions resulting in abnormal movement or posture), but many affected individuals are asymptomatic. High levels of tryptophan have also been implicated in eosinophilia-myalgia syndrome (EMS), an incurable and sometimes fatal flu-like neurological condition linked to the ingestion of large amounts of L-tryptophan. The risk of developing EMS increases with larger doses of tryptophan and increasing age. Some research suggests that certain genetic polymorphisms may be related to the development of EMS. The presence of eosinophilia is a core feature of EMS, along with unusually severe myalgia (muscle pain). It is thought that both tryptophan and certain unidentified tryptophan contaminants may contribute to EMS (PMID: 1763543 ). It has also been suggested that excessive tryptophan or elevation of its metabolites could play a role in amplifying some of the pathological features of EMS (PMID: 10721094 ). This pathological damage is further augmented by metabolites of the kynurenine pathway (a tryptophan degradation pathway). Reduced levels of tryptophan in the blood are typically seen when individuals are fighting chronic infections, suffering from traumatic injuries (burns or wounds) or experiencing sepsis (PMID: 26309411 ). Tryptophan is mainly catabolized through the enzymatic activity of two enzymes: indoleamine-2,3-dioxygenase (IDO) 1 and IDO2, both of which are expressed widely in human tissues, and both of which are induced by interferon gamma (IFN-gamma or IFNG). IDO1 and IDO2 generate tryptophan catabolites such as kynurenine and kynurenic acid. These tryptophan catabolites activate the aryl hydrocarbon receptor (AhR), which plays a key role immune regulation. The role of IDO1 and IDO2 is to effectively deplete tryptophan levels to starve infectious organisms (bacteria and parasites), thereby killing them or slowing their growth. On the other hand, the AhR activation leads to a state of immunosuppression and is intended to serve as a brake on the immune (overexpression of IFNG and IL-1B) response to the infectious organisms. Unfortunately, tryptophan starvation is often not effective against viruses or even all infectious microbes. As a result, this AhR activation by tryptophan catabolites can lead to a situation where viruses (or certain pathogens) continue to survive and multiply even while the immune system is effectively turning off. As a result, high levels of kynurenine and low levels of tryptophan (a high kynurenine to tryptophan ratio) can lead to or even be symptomatic of chronic viral or pathogenic infections or, at worse, sepsis and septic shock (PMID: 33338598 ; PMID: 21731667 ). |
---|
Structure | N[C@@H](CC1=CNC2=C1C=CC=C2)C(O)=O InChI=1S/C11H12N2O2/c12-9(11(14)15)5-7-6-13-10-4-2-1-3-8(7)10/h1-4,6,9,13H,5,12H2,(H,14,15)/t9-/m0/s1 |
---|
Synonyms | Value | Source |
---|
(2S)-2-Amino-3-(1H-indol-3-yl)propanoic acid | ChEBI | (S)-alpha-Amino-1H-indole-3-propanoic acid | ChEBI | (S)-alpha-Amino-beta-(3-indolyl)-propionic acid | ChEBI | (S)-Tryptophan | ChEBI | L-(-)-Tryptophan | ChEBI | L-beta-3-Indolylalanine | ChEBI | Trp | ChEBI | Tryptophan | ChEBI | W | ChEBI | (2S)-2-Amino-3-(1H-indol-3-yl)propanoate | Generator | (S)-a-Amino-1H-indole-3-propanoate | Generator | (S)-a-Amino-1H-indole-3-propanoic acid | Generator | (S)-alpha-Amino-1H-indole-3-propanoate | Generator | (S)-Α-amino-1H-indole-3-propanoate | Generator | (S)-Α-amino-1H-indole-3-propanoic acid | Generator | (S)-a-Amino-b-(3-indolyl)-propionate | Generator | (S)-a-Amino-b-(3-indolyl)-propionic acid | Generator | (S)-alpha-Amino-beta-(3-indolyl)-propionate | Generator | (S)-Α-amino-β-(3-indolyl)-propionate | Generator | (S)-Α-amino-β-(3-indolyl)-propionic acid | Generator | L-b-3-Indolylalanine | Generator | L-Β-3-indolylalanine | Generator | (-)-Tryptophan | HMDB | (L)-Tryptophan | HMDB | (S)-1H-Indole-3-alanine | HMDB | (S)-2-Amino-3-(3-indolyl)propionic acid | HMDB | (S)-a-Amino-b-indolepropionate | HMDB | (S)-a-Amino-b-indolepropionic acid | HMDB | (S)-a-Aminoindole-3-propionate | HMDB | (S)-a-Aminoindole-3-propionic acid | HMDB | (S)-alpha-Amino-beta-indolepropionate | HMDB | (S)-alpha-Amino-beta-indolepropionic acid | HMDB | (S)-alpha-Aminoindole-3-propionate | HMDB | (S)-alpha-Aminoindole-3-propionic acid | HMDB | 1-beta-3-Indolylalanine | HMDB | 1beta-3-Indolylalanine | HMDB | 1H-Indole-3-alanine | HMDB | 2-Amino-3-indolylpropanoate | HMDB | 2-Amino-3-indolylpropanoic acid | HMDB | 3-(1H-indol-3-yl)-L-Alanine | HMDB | 3-indol-3-Ylalanine | HMDB | Alpha'-amino-3-indolepropionic acid | HMDB | alpha-Aminoindole-3-propionic acid | HMDB | Ardeytropin | HMDB | H-TRP-OH | HMDB | Indole-3-alanine | HMDB | Kalma | HMDB | L-alpha-Amino-3-indolepropionic acid | HMDB | L-alpha-Aminoindole-3-propionic acid | HMDB | L-Tryptofan | HMDB | L-Tryptophane | HMDB | Lopac-T-0254 | HMDB | Lyphan | HMDB | Optimax | HMDB | Pacitron | HMDB | Sedanoct | HMDB | Triptofano | HMDB | Trofan | HMDB | Tryptacin | HMDB | Tryptan | HMDB | Tryptophane | HMDB | Tryptophanum | HMDB | Ardeydorm | HMDB | L Tryptophan | HMDB | L-Tryptophan-ratiopharm | HMDB | Merck brand OF tryptophan | HMDB | Niddapharm brand OF tryptophan | HMDB | ICN brand OF tryptophan | HMDB | Levotryptophan | HMDB | PMS Tryptophan | HMDB | PMS-Tryptophan | HMDB | Ratiopharm brand OF tryptophan | HMDB | Esparma brand OF tryptophan | HMDB | Ratio-tryptophan | HMDB | L Tryptophan ratiopharm | HMDB | Naturruhe | HMDB | Tryptophan metabolism alterations | HMDB | Ardeypharm brand OF tryptophan | HMDB | Kalma brand OF tryptophan | HMDB | Pharmascience brand OF tryptophan | HMDB | Upsher-smith brand OF tryptophan | HMDB | Ratio tryptophan | HMDB |
|
---|
Chemical Formula | C11H12N2O2 |
---|
Average Molecular Weight | 204.2252 |
---|
Monoisotopic Molecular Weight | 204.089877638 |
---|
IUPAC Name | (2S)-2-amino-3-(1H-indol-3-yl)propanoic acid |
---|
Traditional Name | L-tryptophan |
---|
CAS Registry Number | 73-22-3 |
---|
SMILES | N[C@@H](CC1=CNC2=C1C=CC=C2)C(O)=O |
---|
InChI Identifier | InChI=1S/C11H12N2O2/c12-9(11(14)15)5-7-6-13-10-4-2-1-3-8(7)10/h1-4,6,9,13H,5,12H2,(H,14,15)/t9-/m0/s1 |
---|
InChI Key | QIVBCDIJIAJPQS-VIFPVBQESA-N |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as indolyl carboxylic acids and derivatives. Indolyl carboxylic acids and derivatives are compounds containing a carboxylic acid chain (of at least 2 carbon atoms) linked to an indole ring. |
---|
Kingdom | Organic compounds |
---|
Super Class | Organoheterocyclic compounds |
---|
Class | Indoles and derivatives |
---|
Sub Class | Indolyl carboxylic acids and derivatives |
---|
Direct Parent | Indolyl carboxylic acids and derivatives |
---|
Alternative Parents | |
---|
Substituents | - Indolyl carboxylic acid derivative
- Alpha-amino acid
- Alpha-amino acid or derivatives
- L-alpha-amino acid
- 3-alkylindole
- Indole
- Aralkylamine
- Benzenoid
- Substituted pyrrole
- Heteroaromatic compound
- Pyrrole
- Amino acid or derivatives
- Amino acid
- Carboxylic acid derivative
- Carboxylic acid
- Monocarboxylic acid or derivatives
- Azacycle
- Amine
- Primary aliphatic amine
- Hydrocarbon derivative
- Organic oxide
- Organic oxygen compound
- Organic nitrogen compound
- Carbonyl group
- Organonitrogen compound
- Organooxygen compound
- Primary amine
- Organopnictogen compound
- Aromatic heteropolycyclic compound
|
---|
Molecular Framework | Aromatic heteropolycyclic compounds |
---|
External Descriptors | |
---|
Ontology |
---|
Physiological effect | |
---|
Disposition | Biological locationRoute of exposureSourceExogenous- Exogenous (HMDB: HMDB0000929)
Food- Food (HMDB: HMDB0000929)
- Meats (HMDB: HMDB0000929)
- Legumes (HMDB: HMDB0000929)
Animal originHerb and spiceVegetableFruitCereal and cereal productNutMilk and milk product- Dairy products (HMDB: HMDB0000929)
Other milk productFermented milkFermented milk productUnfermented milk- Milk (Other mammals) (FooDB: FOOD00690)
- Milk (Human) (FooDB: FOOD00666)
- Milk (Cow) (FooDB: FOOD00618)
- Cow milk, pasteurized, vitamin A + D added, 0% fat (FooDB: FOOD00889)
- Cow milk, pasteurized, vitamin A + D added, 1% fat (FooDB: FOOD00890)
- Cow milk, pasteurized, vitamin A + D added, 2% fat (FooDB: FOOD00891)
- Cow milk, pasteurized, vitamin D added, 3.25% fat (FooDB: FOOD00892)
EggSoyPulseGourdCoffee and coffee productTeaDishBaking goodBeverageAquatic originConfectioneryFat and oilCocoa and cocoa productBaby foodUnclassified food or beverageSnack Synthetic Endogenous |
---|
Process | |
---|
Role | |
---|
Physical Properties |
---|
State | Solid |
---|
Experimental Molecular Properties | Property | Value | Reference |
---|
Melting Point | 230 °C | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | 13.4 mg/mL at 25 °C | YALKOWSKY,SH & DANNENFELSER,RM (1992) | LogP | -1.06 | HANSCH,C ET AL. (1995) |
|
---|
Experimental Chromatographic Properties | Experimental Collision Cross Sections |
---|
Predicted Molecular Properties | |
---|
Predicted Chromatographic Properties | Predicted Collision Cross SectionsPredicted Kovats Retention IndicesUnderivatizedDerivatizedDerivative Name / Structure | SMILES | Kovats RI Value | Column Type | Reference |
---|
L-Tryptophan,1TMS,isomer #1 | C[Si](C)(C)OC(=O)[C@@H](N)CC1=C[NH]C2=CC=CC=C12 | 2197.3 | Semi standard non polar | 33892256 | L-Tryptophan,1TMS,isomer #2 | C[Si](C)(C)N[C@@H](CC1=C[NH]C2=CC=CC=C12)C(=O)O | 2255.2 | Semi standard non polar | 33892256 | L-Tryptophan,1TMS,isomer #3 | C[Si](C)(C)N1C=C(C[C@H](N)C(=O)O)C2=CC=CC=C21 | 2272.6 | Semi standard non polar | 33892256 | L-Tryptophan,2TMS,isomer #1 | C[Si](C)(C)N[C@@H](CC1=C[NH]C2=CC=CC=C12)C(=O)O[Si](C)(C)C | 2210.1 | Semi standard non polar | 33892256 | L-Tryptophan,2TMS,isomer #1 | C[Si](C)(C)N[C@@H](CC1=C[NH]C2=CC=CC=C12)C(=O)O[Si](C)(C)C | 2179.7 | Standard non polar | 33892256 | L-Tryptophan,2TMS,isomer #1 | C[Si](C)(C)N[C@@H](CC1=C[NH]C2=CC=CC=C12)C(=O)O[Si](C)(C)C | 2633.2 | Standard polar | 33892256 | L-Tryptophan,2TMS,isomer #2 | C[Si](C)(C)OC(=O)[C@@H](N)CC1=CN([Si](C)(C)C)C2=CC=CC=C12 | 2225.1 | Semi standard non polar | 33892256 | L-Tryptophan,2TMS,isomer #2 | C[Si](C)(C)OC(=O)[C@@H](N)CC1=CN([Si](C)(C)C)C2=CC=CC=C12 | 2195.8 | Standard non polar | 33892256 | L-Tryptophan,2TMS,isomer #2 | C[Si](C)(C)OC(=O)[C@@H](N)CC1=CN([Si](C)(C)C)C2=CC=CC=C12 | 2721.9 | Standard polar | 33892256 | L-Tryptophan,2TMS,isomer #3 | C[Si](C)(C)N([C@@H](CC1=C[NH]C2=CC=CC=C12)C(=O)O)[Si](C)(C)C | 2414.6 | Semi standard non polar | 33892256 | L-Tryptophan,2TMS,isomer #3 | C[Si](C)(C)N([C@@H](CC1=C[NH]C2=CC=CC=C12)C(=O)O)[Si](C)(C)C | 2259.1 | Standard non polar | 33892256 | L-Tryptophan,2TMS,isomer #3 | C[Si](C)(C)N([C@@H](CC1=C[NH]C2=CC=CC=C12)C(=O)O)[Si](C)(C)C | 2831.1 | Standard polar | 33892256 | L-Tryptophan,2TMS,isomer #4 | C[Si](C)(C)N[C@@H](CC1=CN([Si](C)(C)C)C2=CC=CC=C12)C(=O)O | 2278.7 | Semi standard non polar | 33892256 | L-Tryptophan,2TMS,isomer #4 | C[Si](C)(C)N[C@@H](CC1=CN([Si](C)(C)C)C2=CC=CC=C12)C(=O)O | 2218.2 | Standard non polar | 33892256 | L-Tryptophan,2TMS,isomer #4 | C[Si](C)(C)N[C@@H](CC1=CN([Si](C)(C)C)C2=CC=CC=C12)C(=O)O | 2736.2 | Standard polar | 33892256 | L-Tryptophan,3TMS,isomer #1 | C[Si](C)(C)OC(=O)[C@H](CC1=C[NH]C2=CC=CC=C12)N([Si](C)(C)C)[Si](C)(C)C | 2411.1 | Semi standard non polar | 33892256 | L-Tryptophan,3TMS,isomer #1 | C[Si](C)(C)OC(=O)[C@H](CC1=C[NH]C2=CC=CC=C12)N([Si](C)(C)C)[Si](C)(C)C | 2329.2 | Standard non polar | 33892256 | L-Tryptophan,3TMS,isomer #1 | C[Si](C)(C)OC(=O)[C@H](CC1=C[NH]C2=CC=CC=C12)N([Si](C)(C)C)[Si](C)(C)C | 2530.5 | Standard polar | 33892256 | L-Tryptophan,3TMS,isomer #2 | C[Si](C)(C)N[C@@H](CC1=CN([Si](C)(C)C)C2=CC=CC=C12)C(=O)O[Si](C)(C)C | 2249.5 | Semi standard non polar | 33892256 | L-Tryptophan,3TMS,isomer #2 | C[Si](C)(C)N[C@@H](CC1=CN([Si](C)(C)C)C2=CC=CC=C12)C(=O)O[Si](C)(C)C | 2250.8 | Standard non polar | 33892256 | L-Tryptophan,3TMS,isomer #2 | C[Si](C)(C)N[C@@H](CC1=CN([Si](C)(C)C)C2=CC=CC=C12)C(=O)O[Si](C)(C)C | 2472.1 | Standard polar | 33892256 | L-Tryptophan,3TMS,isomer #3 | C[Si](C)(C)N([C@@H](CC1=CN([Si](C)(C)C)C2=CC=CC=C12)C(=O)O)[Si](C)(C)C | 2443.5 | Semi standard non polar | 33892256 | L-Tryptophan,3TMS,isomer #3 | C[Si](C)(C)N([C@@H](CC1=CN([Si](C)(C)C)C2=CC=CC=C12)C(=O)O)[Si](C)(C)C | 2353.1 | Standard non polar | 33892256 | L-Tryptophan,3TMS,isomer #3 | C[Si](C)(C)N([C@@H](CC1=CN([Si](C)(C)C)C2=CC=CC=C12)C(=O)O)[Si](C)(C)C | 2606.2 | Standard polar | 33892256 | L-Tryptophan,4TMS,isomer #1 | C[Si](C)(C)OC(=O)[C@H](CC1=CN([Si](C)(C)C)C2=CC=CC=C12)N([Si](C)(C)C)[Si](C)(C)C | 2469.8 | Semi standard non polar | 33892256 | L-Tryptophan,4TMS,isomer #1 | C[Si](C)(C)OC(=O)[C@H](CC1=CN([Si](C)(C)C)C2=CC=CC=C12)N([Si](C)(C)C)[Si](C)(C)C | 2388.7 | Standard non polar | 33892256 | L-Tryptophan,4TMS,isomer #1 | C[Si](C)(C)OC(=O)[C@H](CC1=CN([Si](C)(C)C)C2=CC=CC=C12)N([Si](C)(C)C)[Si](C)(C)C | 2421.3 | Standard polar | 33892256 | L-Tryptophan,1TBDMS,isomer #1 | CC(C)(C)[Si](C)(C)OC(=O)[C@@H](N)CC1=C[NH]C2=CC=CC=C12 | 2475.2 | Semi standard non polar | 33892256 | L-Tryptophan,1TBDMS,isomer #2 | CC(C)(C)[Si](C)(C)N[C@@H](CC1=C[NH]C2=CC=CC=C12)C(=O)O | 2522.1 | Semi standard non polar | 33892256 | L-Tryptophan,1TBDMS,isomer #3 | CC(C)(C)[Si](C)(C)N1C=C(C[C@H](N)C(=O)O)C2=CC=CC=C21 | 2534.0 | Semi standard non polar | 33892256 | L-Tryptophan,2TBDMS,isomer #1 | CC(C)(C)[Si](C)(C)N[C@@H](CC1=C[NH]C2=CC=CC=C12)C(=O)O[Si](C)(C)C(C)(C)C | 2710.2 | Semi standard non polar | 33892256 | L-Tryptophan,2TBDMS,isomer #1 | CC(C)(C)[Si](C)(C)N[C@@H](CC1=C[NH]C2=CC=CC=C12)C(=O)O[Si](C)(C)C(C)(C)C | 2627.5 | Standard non polar | 33892256 | L-Tryptophan,2TBDMS,isomer #1 | CC(C)(C)[Si](C)(C)N[C@@H](CC1=C[NH]C2=CC=CC=C12)C(=O)O[Si](C)(C)C(C)(C)C | 2814.8 | Standard polar | 33892256 | L-Tryptophan,2TBDMS,isomer #2 | CC(C)(C)[Si](C)(C)OC(=O)[C@@H](N)CC1=CN([Si](C)(C)C(C)(C)C)C2=CC=CC=C12 | 2688.6 | Semi standard non polar | 33892256 | L-Tryptophan,2TBDMS,isomer #2 | CC(C)(C)[Si](C)(C)OC(=O)[C@@H](N)CC1=CN([Si](C)(C)C(C)(C)C)C2=CC=CC=C12 | 2620.7 | Standard non polar | 33892256 | L-Tryptophan,2TBDMS,isomer #2 | CC(C)(C)[Si](C)(C)OC(=O)[C@@H](N)CC1=CN([Si](C)(C)C(C)(C)C)C2=CC=CC=C12 | 2859.2 | Standard polar | 33892256 | L-Tryptophan,2TBDMS,isomer #3 | CC(C)(C)[Si](C)(C)N([C@@H](CC1=C[NH]C2=CC=CC=C12)C(=O)O)[Si](C)(C)C(C)(C)C | 2907.0 | Semi standard non polar | 33892256 | L-Tryptophan,2TBDMS,isomer #3 | CC(C)(C)[Si](C)(C)N([C@@H](CC1=C[NH]C2=CC=CC=C12)C(=O)O)[Si](C)(C)C(C)(C)C | 2700.5 | Standard non polar | 33892256 | L-Tryptophan,2TBDMS,isomer #3 | CC(C)(C)[Si](C)(C)N([C@@H](CC1=C[NH]C2=CC=CC=C12)C(=O)O)[Si](C)(C)C(C)(C)C | 2902.6 | Standard polar | 33892256 | L-Tryptophan,2TBDMS,isomer #4 | CC(C)(C)[Si](C)(C)N[C@@H](CC1=CN([Si](C)(C)C(C)(C)C)C2=CC=CC=C12)C(=O)O | 2750.2 | Semi standard non polar | 33892256 | L-Tryptophan,2TBDMS,isomer #4 | CC(C)(C)[Si](C)(C)N[C@@H](CC1=CN([Si](C)(C)C(C)(C)C)C2=CC=CC=C12)C(=O)O | 2650.4 | Standard non polar | 33892256 | L-Tryptophan,2TBDMS,isomer #4 | CC(C)(C)[Si](C)(C)N[C@@H](CC1=CN([Si](C)(C)C(C)(C)C)C2=CC=CC=C12)C(=O)O | 2880.6 | Standard polar | 33892256 | L-Tryptophan,3TBDMS,isomer #1 | CC(C)(C)[Si](C)(C)OC(=O)[C@H](CC1=C[NH]C2=CC=CC=C12)N([Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C | 3104.4 | Semi standard non polar | 33892256 | L-Tryptophan,3TBDMS,isomer #1 | CC(C)(C)[Si](C)(C)OC(=O)[C@H](CC1=C[NH]C2=CC=CC=C12)N([Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C | 2971.5 | Standard non polar | 33892256 | L-Tryptophan,3TBDMS,isomer #1 | CC(C)(C)[Si](C)(C)OC(=O)[C@H](CC1=C[NH]C2=CC=CC=C12)N([Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C | 2818.8 | Standard polar | 33892256 | L-Tryptophan,3TBDMS,isomer #2 | CC(C)(C)[Si](C)(C)N[C@@H](CC1=CN([Si](C)(C)C(C)(C)C)C2=CC=CC=C12)C(=O)O[Si](C)(C)C(C)(C)C | 2870.3 | Semi standard non polar | 33892256 | L-Tryptophan,3TBDMS,isomer #2 | CC(C)(C)[Si](C)(C)N[C@@H](CC1=CN([Si](C)(C)C(C)(C)C)C2=CC=CC=C12)C(=O)O[Si](C)(C)C(C)(C)C | 2877.8 | Standard non polar | 33892256 | L-Tryptophan,3TBDMS,isomer #2 | CC(C)(C)[Si](C)(C)N[C@@H](CC1=CN([Si](C)(C)C(C)(C)C)C2=CC=CC=C12)C(=O)O[Si](C)(C)C(C)(C)C | 2789.6 | Standard polar | 33892256 | L-Tryptophan,3TBDMS,isomer #3 | CC(C)(C)[Si](C)(C)N([C@@H](CC1=CN([Si](C)(C)C(C)(C)C)C2=CC=CC=C12)C(=O)O)[Si](C)(C)C(C)(C)C | 3094.8 | Semi standard non polar | 33892256 | L-Tryptophan,3TBDMS,isomer #3 | CC(C)(C)[Si](C)(C)N([C@@H](CC1=CN([Si](C)(C)C(C)(C)C)C2=CC=CC=C12)C(=O)O)[Si](C)(C)C(C)(C)C | 2954.5 | Standard non polar | 33892256 | L-Tryptophan,3TBDMS,isomer #3 | CC(C)(C)[Si](C)(C)N([C@@H](CC1=CN([Si](C)(C)C(C)(C)C)C2=CC=CC=C12)C(=O)O)[Si](C)(C)C(C)(C)C | 2853.8 | Standard polar | 33892256 | L-Tryptophan,4TBDMS,isomer #1 | CC(C)(C)[Si](C)(C)OC(=O)[C@H](CC1=CN([Si](C)(C)C(C)(C)C)C2=CC=CC=C12)N([Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C | 3278.2 | Semi standard non polar | 33892256 | L-Tryptophan,4TBDMS,isomer #1 | CC(C)(C)[Si](C)(C)OC(=O)[C@H](CC1=CN([Si](C)(C)C(C)(C)C)C2=CC=CC=C12)N([Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C | 3154.7 | Standard non polar | 33892256 | L-Tryptophan,4TBDMS,isomer #1 | CC(C)(C)[Si](C)(C)OC(=O)[C@H](CC1=CN([Si](C)(C)C(C)(C)C)C2=CC=CC=C12)N([Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C | 2786.0 | Standard polar | 33892256 |
|
---|
| GC-MS SpectraSpectrum Type | Description | Splash Key | Deposition Date | Source | View |
---|
Experimental GC-MS | GC-MS Spectrum - L-Tryptophan GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (3 TMS) | splash10-0udi-0190000000-feaec8547634dddcad8c | 2014-06-16 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - L-Tryptophan GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (3 TMS) | splash10-0udi-0390000000-45a6c4fd79081597d44a | 2014-06-16 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - L-Tryptophan GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (Non-derivatized) | splash10-0udi-0290000000-34f7274f31a4cb321a0b | 2014-06-16 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - L-Tryptophan GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (3 TMS) | splash10-0fk9-9270000000-9761607cbe821f87f172 | 2014-06-16 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - L-Tryptophan GC-MS (1 TMS) | splash10-001i-0900000000-3faeed7ad32e1755c03c | 2014-06-16 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - L-Tryptophan GC-MS (3 TMS) | splash10-0udi-0290000000-9c57a732e337fade3cb6 | 2014-06-16 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - L-Tryptophan EI-B (Non-derivatized) | splash10-001i-0900000000-d054a214c1717940989f | 2017-09-12 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - L-Tryptophan EI-B (Non-derivatized) | splash10-0udi-0290000000-9860799c854e5c9ac1c7 | 2017-09-12 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - L-Tryptophan GC-EI-TOF (Non-derivatized) | splash10-0udi-0190000000-feaec8547634dddcad8c | 2017-09-12 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - L-Tryptophan GC-EI-TOF (Non-derivatized) | splash10-0udi-0390000000-45a6c4fd79081597d44a | 2017-09-12 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - L-Tryptophan GC-EI-TOF (Non-derivatized) | splash10-0udi-0290000000-34f7274f31a4cb321a0b | 2017-09-12 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - L-Tryptophan GC-EI-QQ (Non-derivatized) | splash10-0udi-3729000000-86129db57aaf1a245f93 | 2017-09-12 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - L-Tryptophan GC-EI-TOF (Non-derivatized) | splash10-0fk9-9270000000-9761607cbe821f87f172 | 2017-09-12 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - L-Tryptophan GC-MS (Non-derivatized) | splash10-001i-0900000000-3faeed7ad32e1755c03c | 2017-09-12 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - L-Tryptophan GC-MS (Non-derivatized) | splash10-0udi-0290000000-9c57a732e337fade3cb6 | 2017-09-12 | HMDB team, MONA, MassBank | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - L-Tryptophan GC-MS (Non-derivatized) - 70eV, Positive | splash10-0560-4900000000-fa932bc4cffed0ca66b7 | 2016-09-22 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - L-Tryptophan GC-MS (1 TMS) - 70eV, Positive | splash10-00e9-9560000000-6829a8b2a2096883999f | 2017-10-06 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - L-Tryptophan GC-MS (Non-derivatized) - 70eV, Positive | Not Available | 2021-10-12 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - L-Tryptophan GC-MS (TMS_1_2) - 70eV, Positive | Not Available | 2021-11-06 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - L-Tryptophan GC-MS (TMS_1_3) - 70eV, Positive | Not Available | 2021-11-06 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - L-Tryptophan GC-MS (TBDMS_1_1) - 70eV, Positive | Not Available | 2021-11-06 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - L-Tryptophan GC-MS (TBDMS_1_2) - 70eV, Positive | Not Available | 2021-11-06 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - L-Tryptophan GC-MS (TBDMS_1_3) - 70eV, Positive | Not Available | 2021-11-06 | Wishart Lab | View Spectrum |
MS/MS SpectraSpectrum Type | Description | Splash Key | Deposition Date | Source | View |
---|
Experimental LC-MS/MS | LC-MS/MS Spectrum - L-Tryptophan LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negative-QTOF | splash10-0udi-0290602010-c09c931538bff74ac400 | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - L-Tryptophan LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negative-QTOF | splash10-0a4i-0900000000-0fed327c2a56f556e04c | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - L-Tryptophan LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negative-QTOF | splash10-0udi-0090000000-98ec1c2c012e58eab924 | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - L-Tryptophan LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negative-QTOF | splash10-00di-0090000000-fc77784da5d9b288d751 | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - L-Tryptophan LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negative-QTOF | splash10-0udi-0290601010-d6f94902c0cf639cb7bc | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - L-Tryptophan LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negative-QTOF | splash10-0a4i-0900000000-27633a4f7ecfac45c730 | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - L-Tryptophan LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negative-QTOF | splash10-0udi-0090000000-ee6cb8392b2e8d644bc1 | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - L-Tryptophan LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negative-QTOF | splash10-004i-0090000000-d81c86eceee1c9824b02 | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - L-Tryptophan LC-ESI-QQ (API3000, Applied Biosystems) 10V, Negative-QTOF | splash10-0udi-0190000000-0e8b883dc8ab06c89d77 | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - L-Tryptophan LC-ESI-QQ (API3000, Applied Biosystems) 20V, Negative-QTOF | splash10-0uxu-2940000000-cb35b9680612e19d8b3a | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - L-Tryptophan LC-ESI-QQ (API3000, Applied Biosystems) 30V, Negative-QTOF | splash10-014i-2900000000-7cc592351cc616b1d75f | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - L-Tryptophan LC-ESI-QQ (API3000, Applied Biosystems) 40V, Negative-QTOF | splash10-014i-1900000000-987615a0add5eb2c3169 | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - L-Tryptophan LC-ESI-QQ (API3000, Applied Biosystems) 50V, Negative-QTOF | splash10-014i-1900000000-f150d9d1e19c72d337a8 | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - L-Tryptophan LC-ESI-QTOF (UPLC Q-Tof Premier, Waters) , Negative-QTOF | splash10-0uxr-2960000000-f4c878f3abb1609bb5c5 | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - L-Tryptophan LC-ESI-QTOF , negative-QTOF | splash10-0udi-0090000000-c73c9b49139319c80b18 | 2017-09-14 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - L-Tryptophan LC-ESI-QTOF , negative-QTOF | splash10-0gb9-0930000000-da94834297fcc5b3d3c5 | 2017-09-14 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - L-Tryptophan LC-ESI-QTOF , negative-QTOF | splash10-014i-0900000000-94061fd1f6b08445cdf3 | 2017-09-14 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - L-Tryptophan LC-ESI-QTOF , negative-QTOF | splash10-014i-0900000000-e78172f4f27df232466e | 2017-09-14 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - L-Tryptophan LC-ESI-QTOF , negative-QTOF | splash10-014i-0900000000-93406e2cdb79770abc7d | 2017-09-14 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - L-Tryptophan LC-ESI-QQ , negative-QTOF | splash10-0udi-0190000000-0e8b883dc8ab06c89d77 | 2017-09-14 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - L-Tryptophan LC-ESI-QQ , negative-QTOF | splash10-0uxu-2940000000-cb35b9680612e19d8b3a | 2017-09-14 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - L-Tryptophan LC-ESI-QQ , negative-QTOF | splash10-014i-2900000000-5187dac98dbd6834d6ba | 2017-09-14 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - L-Tryptophan LC-ESI-QQ , negative-QTOF | splash10-014i-1900000000-987615a0add5eb2c3169 | 2017-09-14 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - L-Tryptophan LC-ESI-QQ , negative-QTOF | splash10-014i-1900000000-174bb4d4390c75ae9a09 | 2017-09-14 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - L-Tryptophan LC-ESI-ITFT , negative-QTOF | splash10-0a4i-0900000000-0fed327c2a56f556e04c | 2017-09-14 | HMDB team, MONA | View Spectrum |
NMR SpectraSpectrum Type | Description | Deposition Date | Source | View |
---|
Experimental 1D NMR | 1H NMR Spectrum (1D, 600 MHz, H2O, experimental) | 2012-12-04 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 100 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 100 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 200 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 200 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 300 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 300 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 400 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 400 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 500 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 500 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 600 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 600 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 700 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 700 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 800 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 800 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 900 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 900 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 1000 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Experimental 1D NMR | 13C NMR Spectrum (1D, 400 MHz, H2O, experimental) | 2021-10-10 | Wishart Lab | View Spectrum | Experimental 2D NMR | [1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, H2O, experimental) | 2012-12-05 | Wishart Lab | View Spectrum |
IR SpectraSpectrum Type | Description | Deposition Date | Source | View |
---|
Predicted IR Spectrum | IR Ion Spectrum (Predicted IRIS Spectrum, Adduct: [M-H]-) | 2023-02-03 | FELIX lab | View Spectrum | Predicted IR Spectrum | IR Ion Spectrum (Predicted IRIS Spectrum, Adduct: [M+H]+) | 2023-02-03 | FELIX lab | View Spectrum | Predicted IR Spectrum | IR Ion Spectrum (Predicted IRIS Spectrum, Adduct: [M+Na]+) | 2023-02-03 | FELIX lab | View Spectrum |
|
---|
Disease References | Epilepsy |
---|
- Rainesalo S, Keranen T, Palmio J, Peltola J, Oja SS, Saransaari P: Plasma and cerebrospinal fluid amino acids in epileptic patients. Neurochem Res. 2004 Jan;29(1):319-24. [PubMed:14992292 ]
- Botez MI, Young SN: Effects of anticonvulsant treatment and low levels of folate and thiamine on amine metabolites in cerebrospinal fluid. Brain. 1991 Feb;114 ( Pt 1A):333-48. [PubMed:1705463 ]
| Schizophrenia |
---|
- Alfredsson G, Wiesel FA: Monoamine metabolites and amino acids in serum from schizophrenic patients before and during sulpiride treatment. Psychopharmacology (Berl). 1989;99(3):322-7. [PubMed:2480613 ]
- Do KQ, Lauer CJ, Schreiber W, Zollinger M, Gutteck-Amsler U, Cuenod M, Holsboer F: gamma-Glutamylglutamine and taurine concentrations are decreased in the cerebrospinal fluid of drug-naive patients with schizophrenic disorders. J Neurochem. 1995 Dec;65(6):2652-62. [PubMed:7595563 ]
- Fukushima T, Iizuka H, Yokota A, Suzuki T, Ohno C, Kono Y, Nishikiori M, Seki A, Ichiba H, Watanabe Y, Hongo S, Utsunomiya M, Nakatani M, Sadamoto K, Yoshio T: Quantitative analyses of schizophrenia-associated metabolites in serum: serum D-lactate levels are negatively correlated with gamma-glutamylcysteine in medicated schizophrenia patients. PLoS One. 2014 Jul 8;9(7):e101652. doi: 10.1371/journal.pone.0101652. eCollection 2014. [PubMed:25004141 ]
- Kim YK, Myint AM, Verkerk R, Scharpe S, Steinbusch H, Leonard B: Cytokine changes and tryptophan metabolites in medication-naive and medication-free schizophrenic patients. Neuropsychobiology. 2009;59(2):123-9. doi: 10.1159/000213565. Epub 2009 Apr 22. [PubMed:19390223 ]
- Xuan J, Pan G, Qiu Y, Yang L, Su M, Liu Y, Chen J, Feng G, Fang Y, Jia W, Xing Q, He L: Metabolomic profiling to identify potential serum biomarkers for schizophrenia and risperidone action. J Proteome Res. 2011 Dec 2;10(12):5433-43. doi: 10.1021/pr2006796. Epub 2011 Nov 8. [PubMed:22007635 ]
| Alzheimer's disease |
---|
- Fonteh AN, Harrington RJ, Tsai A, Liao P, Harrington MG: Free amino acid and dipeptide changes in the body fluids from Alzheimer's disease subjects. Amino Acids. 2007 Feb;32(2):213-24. Epub 2006 Oct 10. [PubMed:17031479 ]
- Tsuruoka M, Hara J, Hirayama A, Sugimoto M, Soga T, Shankle WR, Tomita M: Capillary electrophoresis-mass spectrometry-based metabolome analysis of serum and saliva from neurodegenerative dementia patients. Electrophoresis. 2013 Oct;34(19):2865-72. doi: 10.1002/elps.201300019. Epub 2013 Sep 6. [PubMed:23857558 ]
| Colorectal cancer |
---|
- Qiu Y, Cai G, Su M, Chen T, Zheng X, Xu Y, Ni Y, Zhao A, Xu LX, Cai S, Jia W: Serum metabolite profiling of human colorectal cancer using GC-TOFMS and UPLC-QTOFMS. J Proteome Res. 2009 Oct;8(10):4844-50. doi: 10.1021/pr9004162. [PubMed:19678709 ]
- Ni Y, Xie G, Jia W: Metabonomics of human colorectal cancer: new approaches for early diagnosis and biomarker discovery. J Proteome Res. 2014 Sep 5;13(9):3857-70. doi: 10.1021/pr500443c. Epub 2014 Aug 14. [PubMed:25105552 ]
- Brown DG, Rao S, Weir TL, O'Malia J, Bazan M, Brown RJ, Ryan EP: Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab. 2016 Jun 6;4:11. doi: 10.1186/s40170-016-0151-y. eCollection 2016. [PubMed:27275383 ]
- Sinha R, Ahn J, Sampson JN, Shi J, Yu G, Xiong X, Hayes RB, Goedert JJ: Fecal Microbiota, Fecal Metabolome, and Colorectal Cancer Interrelations. PLoS One. 2016 Mar 25;11(3):e0152126. doi: 10.1371/journal.pone.0152126. eCollection 2016. [PubMed:27015276 ]
- Goedert JJ, Sampson JN, Moore SC, Xiao Q, Xiong X, Hayes RB, Ahn J, Shi J, Sinha R: Fecal metabolomics: assay performance and association with colorectal cancer. Carcinogenesis. 2014 Sep;35(9):2089-96. doi: 10.1093/carcin/bgu131. Epub 2014 Jul 18. [PubMed:25037050 ]
| Ovarian cancer |
---|
- Zhang T, Wu X, Yin M, Fan L, Zhang H, Zhao F, Zhang W, Ke C, Zhang G, Hou Y, Zhou X, Lou G, Li K: Discrimination between malignant and benign ovarian tumors by plasma metabolomic profiling using ultra performance liquid chromatography/mass spectrometry. Clin Chim Acta. 2012 May 18;413(9-10):861-8. doi: 10.1016/j.cca.2012.01.026. Epub 2012 Jan 30. [PubMed:22309680 ]
| Obesity |
---|
- Simone Wahl, Christina Holzapfel, Zhonghao Yu, Michaela Breier, Ivan Kondofersky, Christiane Fuchs, Paula Singmann, Cornelia Prehn, Jerzy Adamski, Harald Grallert, Thomas Illig, Rui Wang-Sattler, Thomas Reinehr (2013). Metabolomics reveals determinants of weight loss during lifestyle intervention in obese children. Metabolomics.
| Nicotinamide Adenine Dinucleotide Deficiency |
---|
- Shi H, Enriquez A, Rapadas M, Martin EMMA, Wang R, Moreau J, Lim CK, Szot JO, Ip E, Hughes JN, Sugimoto K, Humphreys DT, McInerney-Leo AM, Leo PJ, Maghzal GJ, Halliday J, Smith J, Colley A, Mark PR, Collins F, Sillence DO, Winlaw DS, Ho JWK, Guillemin GJ, Brown MA, Kikuchi K, Thomas PQ, Stocker R, Giannoulatou E, Chapman G, Duncan EL, Sparrow DB, Dunwoodie SL: NAD Deficiency, Congenital Malformations, and Niacin Supplementation. N Engl J Med. 2017 Aug 10;377(6):544-552. doi: 10.1056/NEJMoa1616361. [PubMed:28792876 ]
| Sepsis |
---|
- Ferrario M, Cambiaghi A, Brunelli L, Giordano S, Caironi P, Guatteri L, Raimondi F, Gattinoni L, Latini R, Masson S, Ristagno G, Pastorelli R: Mortality prediction in patients with severe septic shock: a pilot study using a target metabolomics approach. Sci Rep. 2016 Feb 5;6:20391. doi: 10.1038/srep20391. [PubMed:26847922 ]
| Hartnup disease |
---|
- Jonas AJ, Butler IJ: Circumvention of defective neutral amino acid transport in Hartnup disease using tryptophan ethyl ester. J Clin Invest. 1989 Jul;84(1):200-4. [PubMed:2472426 ]
| Leukemia |
---|
- Peng CT, Wu KH, Lan SJ, Tsai JJ, Tsai FJ, Tsai CH: Amino acid concentrations in cerebrospinal fluid in children with acute lymphoblastic leukemia undergoing chemotherapy. Eur J Cancer. 2005 May;41(8):1158-63. Epub 2005 Apr 14. [PubMed:15911239 ]
| Olivopontocerebral atrophy |
---|
- Botez MI, Young SN: Biogenic amine metabolites and thiamine in cerebrospinal fluid in heredo-degenerative ataxias. Can J Neurol Sci. 2001 May;28(2):134-40. [PubMed:11383938 ]
| Hereditary spastic paraplegia |
---|
- Botez MI, Young SN: Biogenic amine metabolites and thiamine in cerebrospinal fluid in heredo-degenerative ataxias. Can J Neurol Sci. 2001 May;28(2):134-40. [PubMed:11383938 ]
| Hypothyroidism |
---|
- Sjoberg S, Eriksson M, Nordin C: L-thyroxine treatment and neurotransmitter levels in the cerebrospinal fluid of hypothyroid patients: a pilot study. Eur J Endocrinol. 1998 Nov;139(5):493-7. [PubMed:9849813 ]
| Friedreich's ataxia |
---|
- Botez MI, Young SN: Biogenic amine metabolites and thiamine in cerebrospinal fluid in heredo-degenerative ataxias. Can J Neurol Sci. 2001 May;28(2):134-40. [PubMed:11383938 ]
| Celiac disease |
---|
- Hallert C, Allenmark S, Larsson-Cohn U, Sedvall G: High level of pyridoxal 5'-phosphate in the cerebrospinal fluid of adult celiac patients. Am J Clin Nutr. 1982 Nov;36(5):851-4. [PubMed:6182788 ]
- Di Cagno R, De Angelis M, De Pasquale I, Ndagijimana M, Vernocchi P, Ricciuti P, Gagliardi F, Laghi L, Crecchio C, Guerzoni ME, Gobbetti M, Francavilla R: Duodenal and faecal microbiota of celiac children: molecular, phenotype and metabolome characterization. BMC Microbiol. 2011 Oct 4;11:219. doi: 10.1186/1471-2180-11-219. [PubMed:21970810 ]
- De Angelis M, Vannini L, Di Cagno R, Cavallo N, Minervini F, Francavilla R, Ercolini D, Gobbetti M: Salivary and fecal microbiota and metabolome of celiac children under gluten-free diet. Int J Food Microbiol. 2016 Dec 19;239:125-132. doi: 10.1016/j.ijfoodmicro.2016.07.025. Epub 2016 Jul 19. [PubMed:27452636 ]
| Irritable bowel syndrome |
---|
- Le Gall G, Noor SO, Ridgway K, Scovell L, Jamieson C, Johnson IT, Colquhoun IJ, Kemsley EK, Narbad A: Metabolomics of fecal extracts detects altered metabolic activity of gut microbiota in ulcerative colitis and irritable bowel syndrome. J Proteome Res. 2011 Sep 2;10(9):4208-18. doi: 10.1021/pr2003598. Epub 2011 Aug 8. [PubMed:21761941 ]
| Ulcerative colitis |
---|
- Le Gall G, Noor SO, Ridgway K, Scovell L, Jamieson C, Johnson IT, Colquhoun IJ, Kemsley EK, Narbad A: Metabolomics of fecal extracts detects altered metabolic activity of gut microbiota in ulcerative colitis and irritable bowel syndrome. J Proteome Res. 2011 Sep 2;10(9):4208-18. doi: 10.1021/pr2003598. Epub 2011 Aug 8. [PubMed:21761941 ]
- Kolho KL, Pessia A, Jaakkola T, de Vos WM, Velagapudi V: Faecal and Serum Metabolomics in Paediatric Inflammatory Bowel Disease. J Crohns Colitis. 2017 Mar 1;11(3):321-334. doi: 10.1093/ecco-jcc/jjw158. [PubMed:27609529 ]
| Autism |
---|
- De Angelis M, Piccolo M, Vannini L, Siragusa S, De Giacomo A, Serrazzanetti DI, Cristofori F, Guerzoni ME, Gobbetti M, Francavilla R: Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS One. 2013 Oct 9;8(10):e76993. doi: 10.1371/journal.pone.0076993. eCollection 2013. [PubMed:24130822 ]
| Crohn's disease |
---|
- Kolho KL, Pessia A, Jaakkola T, de Vos WM, Velagapudi V: Faecal and Serum Metabolomics in Paediatric Inflammatory Bowel Disease. J Crohns Colitis. 2017 Mar 1;11(3):321-334. doi: 10.1093/ecco-jcc/jjw158. [PubMed:27609529 ]
| Rheumatoid arthritis |
---|
- Tie-juan ShaoZhi-xing HeZhi-jun XieHai-chang LiMei-jiao WangCheng-ping Wen. Characterization of ankylosing spondylitis and rheumatoid arthritis using 1H NMR-based metabolomics of human fecal extracts. Metabolomics. April 2016, 12:70 [Link]
| Perillyl alcohol administration for cancer treatment |
---|
- Sugimoto M, Wong DT, Hirayama A, Soga T, Tomita M: Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics. 2010 Mar;6(1):78-95. Epub 2009 Sep 10. [PubMed:20300169 ]
| Pancreatic cancer |
---|
- Sugimoto M, Wong DT, Hirayama A, Soga T, Tomita M: Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics. 2010 Mar;6(1):78-95. Epub 2009 Sep 10. [PubMed:20300169 ]
| Periodontal disease |
---|
- Sugimoto M, Wong DT, Hirayama A, Soga T, Tomita M: Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics. 2010 Mar;6(1):78-95. Epub 2009 Sep 10. [PubMed:20300169 ]
| Frontotemporal dementia |
---|
- Tsuruoka M, Hara J, Hirayama A, Sugimoto M, Soga T, Shankle WR, Tomita M: Capillary electrophoresis-mass spectrometry-based metabolome analysis of serum and saliva from neurodegenerative dementia patients. Electrophoresis. 2013 Oct;34(19):2865-72. doi: 10.1002/elps.201300019. Epub 2013 Sep 6. [PubMed:23857558 ]
| Lewy body disease |
---|
- Tsuruoka M, Hara J, Hirayama A, Sugimoto M, Soga T, Shankle WR, Tomita M: Capillary electrophoresis-mass spectrometry-based metabolome analysis of serum and saliva from neurodegenerative dementia patients. Electrophoresis. 2013 Oct;34(19):2865-72. doi: 10.1002/elps.201300019. Epub 2013 Sep 6. [PubMed:23857558 ]
| Attachment loss |
---|
- Liebsch C, Pitchika V, Pink C, Samietz S, Kastenmuller G, Artati A, Suhre K, Adamski J, Nauck M, Volzke H, Friedrich N, Kocher T, Holtfreter B, Pietzner M: The Saliva Metabolome in Association to Oral Health Status. J Dent Res. 2019 Jun;98(6):642-651. doi: 10.1177/0022034519842853. Epub 2019 Apr 26. [PubMed:31026179 ]
| Periodontal Probing Depth |
---|
- Liebsch C, Pitchika V, Pink C, Samietz S, Kastenmuller G, Artati A, Suhre K, Adamski J, Nauck M, Volzke H, Friedrich N, Kocher T, Holtfreter B, Pietzner M: The Saliva Metabolome in Association to Oral Health Status. J Dent Res. 2019 Jun;98(6):642-651. doi: 10.1177/0022034519842853. Epub 2019 Apr 26. [PubMed:31026179 ]
| Cachexia |
---|
- Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, Hau DD, Psychogios N, Dong E, Bouatra S, Mandal R, Sinelnikov I, Xia J, Jia L, Cruz JA, Lim E, Sobsey CA, Shrivastava S, Huang P, Liu P, Fang L, Peng J, Fradette R, Cheng D, Tzur D, Clements M, Lewis A, De Souza A, Zuniga A, Dawe M, Xiong Y, Clive D, Greiner R, Nazyrova A, Shaykhutdinov R, Li L, Vogel HJ, Forsythe I: HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res. 2009 Jan;37(Database issue):D603-10. doi: 10.1093/nar/gkn810. Epub 2008 Oct 25. [PubMed:18953024 ]
| Eosinophilic esophagitis |
---|
- Slae, M., Huynh, H., Wishart, D.S. (2014). Analysis of 30 normal pediatric urine samples via NMR spectroscopy (unpublished work). NA.
| Tryptophanuria with dwarfism |
---|
- TADA K, ITO H, WADA Y, ARAKAWA T: CONGENITAL TRYPTOPHANURIA WITH DWARFISM ("H" DISEASE-LIKE CLINICAL FEATURES WITHOUT INDICANURIA AND GENERALIZED AMINOACIDURIA):--A PROBABLY NEW INBORN ERROR OF TRYPTOPHAN METABOLISM. Tohoku J Exp Med. 1963 Jul 25;80:118-34. [PubMed:14055140 ]
|
|
---|
General References | - Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009 Feb 12;457(7231):910-4. doi: 10.1038/nature07762. [PubMed:19212411 ]
- Sjoberg S, Eriksson M, Nordin C: L-thyroxine treatment and neurotransmitter levels in the cerebrospinal fluid of hypothyroid patients: a pilot study. Eur J Endocrinol. 1998 Nov;139(5):493-7. [PubMed:9849813 ]
- Eklundh T, Eriksson M, Sjoberg S, Nordin C: Monoamine precursors, transmitters and metabolites in cerebrospinal fluid: a prospective study in healthy male subjects. J Psychiatr Res. 1996 May-Jun;30(3):201-8. [PubMed:8884658 ]
- Peng CT, Wu KH, Lan SJ, Tsai JJ, Tsai FJ, Tsai CH: Amino acid concentrations in cerebrospinal fluid in children with acute lymphoblastic leukemia undergoing chemotherapy. Eur J Cancer. 2005 May;41(8):1158-63. Epub 2005 Apr 14. [PubMed:15911239 ]
- Cynober LA: Plasma amino acid levels with a note on membrane transport: characteristics, regulation, and metabolic significance. Nutrition. 2002 Sep;18(9):761-6. [PubMed:12297216 ]
- Rainesalo S, Keranen T, Palmio J, Peltola J, Oja SS, Saransaari P: Plasma and cerebrospinal fluid amino acids in epileptic patients. Neurochem Res. 2004 Jan;29(1):319-24. [PubMed:14992292 ]
- Buczko W, Cylwik D, Stokowska W: [Metabolism of tryptophan via the kynurenine pathway in saliva]. Postepy Hig Med Dosw (Online). 2005;59:283-9. [PubMed:15995595 ]
- Heyes MP, Saito K, Crowley JS, Davis LE, Demitrack MA, Der M, Dilling LA, Elia J, Kruesi MJ, Lackner A, et al.: Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease. Brain. 1992 Oct;115 ( Pt 5):1249-73. [PubMed:1422788 ]
- Koskiniemi M, Laakso J, Kuurne T, Laipio M, Harkonen M: Indole levels in human lumbar and ventricular cerebrospinal fluid and the effect of L-tryptophan administration. Acta Neurol Scand. 1985 Feb;71(2):127-32. [PubMed:2580417 ]
- Jonas AJ, Butler IJ: Circumvention of defective neutral amino acid transport in Hartnup disease using tryptophan ethyl ester. J Clin Invest. 1989 Jul;84(1):200-4. [PubMed:2472426 ]
- Guchhait RB, Janson C, Price WH: Validity of plasma factor in schizophrenia as measured by tryptophan uptake. Biol Psychiatry. 1975 Jun;10(3):303-14. [PubMed:49200 ]
- Kennedy JS, Gwirtsman HE, Schmidt DE, Johnson BW, Fielstein E, Salomon RM, Shiavi RG, Ebert MH, Parris WC, Loosen PT: Serial cerebrospinal fluid tryptophan and 5-hydroxy indoleacetic acid concentrations in healthy human subjects. Life Sci. 2002 Aug 23;71(14):1703-15. [PubMed:12137916 ]
- Bender KI, Lutsevich NF, Lutsevich AN, Kupchikov VV: [Endogenous metabolites as modulators of the transport of drugs by serum albumin]. Farmakol Toksikol. 1990 May-Jun;53(3):72-80. [PubMed:2201566 ]
- Heiman-Patterson TD, Bird SJ, Parry GJ, Varga J, Shy ME, Culligan NW, Edelsohn L, Tatarian GT, Heyes MP, Garcia CA, et al.: Peripheral neuropathy associated with eosinophilia-myalgia syndrome. Ann Neurol. 1990 Oct;28(4):522-8. [PubMed:2174666 ]
- Talbert AM, Tranter GE, Holmes E, Francis PL: Determination of drug-plasma protein binding kinetics and equilibria by chromatographic profiling: exemplification of the method using L-tryptophan and albumin. Anal Chem. 2002 Jan 15;74(2):446-52. [PubMed:11811421 ]
- Dunner DL, Heiber S, Perel JM: The effect of L-tryptophan administration on the concentration of probenecid in plasma and cerebrospinal fluid in patients. Psychopharmacology (Berl). 1977 Aug 16;53(3):305-8. [PubMed:408860 ]
- George CF, Millar TW, Hanly PJ, Kryger MH: The effect of L-tryptophan on daytime sleep latency in normals: correlation with blood levels. Sleep. 1989 Aug;12(4):345-53. [PubMed:2669092 ]
- Gutsche B, Grun C, Scheutzow D, Herderich M: Tryptophan glycoconjugates in food and human urine. Biochem J. 1999 Oct 1;343 Pt 1:11-9. [PubMed:10493906 ]
- Milburn DS, Myers CW: Tryptophan toxicity: a pharmacoepidemiologic review of eosinophilia-myalgia syndrome. DICP. 1991 Nov;25(11):1259-62. [PubMed:1763543 ]
- Gross B, Ronen N, Honigman S, Livne E: Tryptophan toxicity--time and dose response in rats. Adv Exp Med Biol. 1999;467:507-16. [PubMed:10721094 ]
- Elshenawy S, Pinney SE, Stuart T, Doulias PT, Zura G, Parry S, Elovitz MA, Bennett MJ, Bansal A, Strauss JF 3rd, Ischiropoulos H, Simmons RA: The Metabolomic Signature of the Placenta in Spontaneous Preterm Birth. Int J Mol Sci. 2020 Feb 4;21(3). pii: ijms21031043. doi: 10.3390/ijms21031043. [PubMed:32033212 ]
- Mehraj V, Routy JP: Tryptophan Catabolism in Chronic Viral Infections: Handling Uninvited Guests. Int J Tryptophan Res. 2015 Aug 4;8:41-8. doi: 10.4137/IJTR.S26862. eCollection 2015. [PubMed:26309411 ]
- Lionetto L, Ulivieri M, Capi M, De Bernardini D, Fazio F, Petrucca A, Pomes LM, De Luca O, Gentile G, Casolla B, Curto M, Salerno G, Schillizzi S, Torre MS, Santino I, Rocco M, Marchetti P, Aceti A, Ricci A, Bonfini R, Nicoletti F, Simmaco M, Borro M: Increased kynurenine-to-tryptophan ratio in the serum of patients infected with SARS-CoV2: An observational cohort study. Biochim Biophys Acta Mol Basis Dis. 2021 Mar 1;1867(3):166042. doi: 10.1016/j.bbadis.2020.166042. Epub 2020 Dec 16. [PubMed:33338598 ]
- Darcy CJ, Davis JS, Woodberry T, McNeil YR, Stephens DP, Yeo TW, Anstey NM: An observational cohort study of the kynurenine to tryptophan ratio in sepsis: association with impaired immune and microvascular function. PLoS One. 2011;6(6):e21185. doi: 10.1371/journal.pone.0021185. Epub 2011 Jun 22. [PubMed:21731667 ]
|
---|