Hmdb loader
Record Information
Version5.0
StatusExpected but not Quantified
Creation Date2012-09-11 18:28:27 UTC
Update Date2023-02-21 17:23:32 UTC
HMDB IDHMDB0033716
Secondary Accession Numbers
  • HMDB33716
Metabolite Identification
Common Name3-Phenylpropanal
Description3-Phenylpropanal, also known as benzenepropanal or benzylacetaldehyde, belongs to the class of organic compounds known as benzene and substituted derivatives. These are aromatic compounds containing one monocyclic ring system consisting of benzene. 3-Phenylpropanal is a balsam, chocolate, and cinnamon tasting compound. 3-Phenylpropanal is found, on average, in the highest concentration within ceylon cinnamons. 3-Phenylpropanal has also been detected, but not quantified, in several different foods, such as chinese cinnamons, garden tomato (var.), cherry tomato, herbs and spices, and garden tomato.
Structure
Data?1677000212
Synonyms
ValueSource
3-Phenyl-1-propanalChEBI
3-Phenylpropan-1-alChEBI
3-PhenylpropionaldehydeChEBI
3-Phenylpropyl aldehydeChEBI
3-PhenylpropylaldehydeChEBI
BenzenepropanalChEBI
BenzylacetaldehydeChEBI
beta-PhenylpropionaldehydeChEBI
DihydrocinnamaldehydeChEBI
HydrocinnamaldehydeChEBI
Hydrocinnamic aldehydeChEBI
HydrocinnamylaldehydeChEBI
b-PhenylpropionaldehydeGenerator
Β-phenylpropionaldehydeGenerator
3-Phenyl-propionaldehydeChEMBL, HMDB
3-Phenyl-propionaidehydeHMDB
Benzenepropanal, 9ciHMDB
beta -PhenylpropionaldehydeHMDB
FEMA 2887HMDB
Phenyl-propanalHMDB
PhenylpropionaldehydeHMDB
3-PhenylpropanalHMDB
3-PhenylpropanaldehydeHMDB
Chemical FormulaC9H10O
Average Molecular Weight134.1751
Monoisotopic Molecular Weight134.073164942
IUPAC Name3-phenylpropanal
Traditional Namebenzenepropanal
CAS Registry Number104-53-0
SMILES
O=CCCC1=CC=CC=C1
InChI Identifier
InChI=1S/C9H10O/c10-8-4-7-9-5-2-1-3-6-9/h1-3,5-6,8H,4,7H2
InChI KeyYGCZTXZTJXYWCO-UHFFFAOYSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as benzene and substituted derivatives. These are aromatic compounds containing one monocyclic ring system consisting of benzene.
KingdomOrganic compounds
Super ClassBenzenoids
ClassBenzene and substituted derivatives
Sub ClassNot Available
Direct ParentBenzene and substituted derivatives
Alternative Parents
Substituents
  • Monocyclic benzene moiety
  • Alpha-hydrogen aldehyde
  • Organic oxygen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Organooxygen compound
  • Carbonyl group
  • Aldehyde
  • Aromatic homomonocyclic compound
Molecular FrameworkAromatic homomonocyclic compounds
External DescriptorsNot Available
Ontology
Physiological effect
Disposition
ProcessNot Available
Role
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting Point47 °CNot Available
Boiling Point97.00 to 98.00 °C. @ 12.00 mm HgThe Good Scents Company Information System
Water Solubility1624 mg/L @ 25 °C (est)The Good Scents Company Information System
LogP1.780 (est)The Good Scents Company Information System
Experimental Chromatographic PropertiesNot Available
Predicted Molecular Properties
PropertyValueSource
Water Solubility0.56 g/LALOGPS
logP2.14ALOGPS
logP1.9ChemAxon
logS-2.4ALOGPS
pKa (Strongest Acidic)17.44ChemAxon
pKa (Strongest Basic)-7ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count1ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area17.07 ŲChemAxon
Rotatable Bond Count3ChemAxon
Refractivity41.04 m³·mol⁻¹ChemAxon
Polarizability15 ųChemAxon
Number of Rings1ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterNoChemAxon
Veber's RuleYesChemAxon
MDDR-like RuleNoChemAxon
Predicted Chromatographic Properties

Predicted Collision Cross Sections

PredictorAdduct TypeCCS Value (Å2)Reference
DarkChem[M+H]+128.50231661259
DarkChem[M-H]-124.7631661259
DeepCCS[M+H]+128.83130932474
DeepCCS[M-H]-125.72830932474
DeepCCS[M-2H]-162.68330932474
DeepCCS[M+Na]+137.78830932474
AllCCS[M+H]+128.332859911
AllCCS[M+H-H2O]+123.632859911
AllCCS[M+NH4]+132.632859911
AllCCS[M+Na]+133.932859911
AllCCS[M-H]-128.932859911
AllCCS[M+Na-2H]-130.532859911
AllCCS[M+HCOO]-132.332859911

Predicted Kovats Retention Indices

Underivatized

MetaboliteSMILESKovats RI ValueColumn TypeReference
3-PhenylpropanalO=CCCC1=CC=CC=C11768.6Standard polar33892256
3-PhenylpropanalO=CCCC1=CC=CC=C11093.2Standard non polar33892256
3-PhenylpropanalO=CCCC1=CC=CC=C11168.3Semi standard non polar33892256

Derivatized

Derivative Name / StructureSMILESKovats RI ValueColumn TypeReference
3-Phenylpropanal,1TMS,isomer #1C[Si](C)(C)OC=CCC1=CC=CC=C11398.1Semi standard non polar33892256
3-Phenylpropanal,1TMS,isomer #1C[Si](C)(C)OC=CCC1=CC=CC=C11297.5Standard non polar33892256
3-Phenylpropanal,1TBDMS,isomer #1CC(C)(C)[Si](C)(C)OC=CCC1=CC=CC=C11634.8Semi standard non polar33892256
3-Phenylpropanal,1TBDMS,isomer #1CC(C)(C)[Si](C)(C)OC=CCC1=CC=CC=C11548.0Standard non polar33892256
Spectra

GC-MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Experimental GC-MSGC-MS Spectrum - 3-Phenylpropanal EI-B (Non-derivatized)splash10-002f-9200000000-79841a7270e9c9570f252017-09-12HMDB team, MONA, MassBankView Spectrum
Experimental GC-MSGC-MS Spectrum - 3-Phenylpropanal EI-B (Non-derivatized)splash10-002f-9200000000-79841a7270e9c9570f252018-05-18HMDB team, MONA, MassBankView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - 3-Phenylpropanal GC-MS (Non-derivatized) - 70eV, Positivesplash10-0006-9500000000-9b29d5a5d4722ac4e79a2017-09-01Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - 3-Phenylpropanal GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12Wishart LabView Spectrum
MSMass Spectrum (Electron Ionization)splash10-002f-9200000000-b6c6eb84142ecf8702d82015-03-01Not AvailableView Spectrum

MS/MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 3-Phenylpropanal 10V, Positive-QTOFsplash10-000i-1900000000-ebe1fed44873777786462016-06-03Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 3-Phenylpropanal 20V, Positive-QTOFsplash10-00ku-4900000000-c705b023e92db7b411fd2016-06-03Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 3-Phenylpropanal 40V, Positive-QTOFsplash10-052f-9200000000-607e7d0c5fcdf2de6aac2016-06-03Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 3-Phenylpropanal 10V, Negative-QTOFsplash10-001i-0900000000-3a59a74e50fa2604bc472016-08-03Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 3-Phenylpropanal 20V, Negative-QTOFsplash10-001i-2900000000-79cf5ba3d914fdc64f402016-08-03Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 3-Phenylpropanal 40V, Negative-QTOFsplash10-0006-9100000000-5563a4404919b9fc143e2016-08-03Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 3-Phenylpropanal 10V, Positive-QTOFsplash10-0006-9100000000-eb62ae1a31d2b28499712021-09-23Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 3-Phenylpropanal 20V, Positive-QTOFsplash10-0006-9000000000-9b2cb49a18250b030f1f2021-09-23Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 3-Phenylpropanal 40V, Positive-QTOFsplash10-0006-9100000000-e1432465bd44545249a72021-09-23Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 3-Phenylpropanal 10V, Negative-QTOFsplash10-001l-4900000000-5e63967b8e186a03774c2021-09-24Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 3-Phenylpropanal 20V, Negative-QTOFsplash10-0a4l-8900000000-ff8bcbace26e3eb7f39a2021-09-24Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - 3-Phenylpropanal 40V, Negative-QTOFsplash10-00mo-9000000000-f2209f9b261012781d542021-09-24Wishart LabView Spectrum

NMR Spectra

Spectrum TypeDescriptionDeposition DateSourceView

IR Spectra

Spectrum TypeDescriptionDeposition DateSourceView
Predicted IR SpectrumIR Ion Spectrum (Predicted IRIS Spectrum, Adduct: [M+H]+)2023-02-04FELIX labView Spectrum
Predicted IR SpectrumIR Ion Spectrum (Predicted IRIS Spectrum, Adduct: [M+Na]+)2023-02-04FELIX labView Spectrum
Biological Properties
Cellular Locations
  • Cytoplasm
  • Extracellular
Biospecimen LocationsNot Available
Tissue LocationsNot Available
Pathways
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDFDB011835
KNApSAcK IDNot Available
Chemspider ID7421
KEGG Compound IDNot Available
BioCyc IDCPD-19228
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound7707
PDB ID3PL
ChEBI ID39940
Food Biomarker OntologyNot Available
VMH IDNot Available
MarkerDB IDNot Available
Good Scents IDrw1010241
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Boymans E, Janssen M, Muller C, Lutz M, Vogt D: Rh-catalyzed linear hydroformylation of styrene. Dalton Trans. 2013 Jan 7;42(1):137-42. doi: 10.1039/c2dt31738a. [PubMed:23104326 ]
  2. Xue X, Yu A, Cai Y, Cheng JP: A computational reinvestigation of the formation of N-alkylpyrroles via intermolecular redox amination. Org Lett. 2011 Nov 18;13(22):6054-7. doi: 10.1021/ol2025247. Epub 2011 Oct 20. [PubMed:22014326 ]
  3. Rocha-Martin J, Vega D, Bolivar JM, Hidalgo A, Berenguer J, Guisan JM, Lopez-Gallego F: Characterization and further stabilization of a new anti-prelog specific alcohol dehydrogenase from Thermus thermophilus HB27 for asymmetric reduction of carbonyl compounds. Bioresour Technol. 2012 Jan;103(1):343-50. doi: 10.1016/j.biortech.2011.10.018. Epub 2011 Oct 17. [PubMed:22055107 ]
  4. Zandvoort E, Geertsema EM, Quax WJ, Poelarends GJ: Enhancement of the promiscuous aldolase and dehydration activities of 4-oxalocrotonate tautomerase by protein engineering. Chembiochem. 2012 Jun 18;13(9):1274-7. doi: 10.1002/cbic.201200225. Epub 2012 May 21. [PubMed:22615135 ]
  5. Kasahara H, Jiao Y, Bedgar DL, Kim SJ, Patten AM, Xia ZQ, Davin LB, Lewis NG: Pinus taeda phenylpropenal double-bond reductase: purification, cDNA cloning, heterologous expression in Escherichia coli, and subcellular localization in P. taeda. Phytochemistry. 2006 Aug;67(16):1765-80. Epub 2006 Aug 14. [PubMed:16905164 ]
  6. Vilaplana F, Martinez-Sanz M, Ribes-Greus A, Karlsson S: Emission pattern of semi-volatile organic compounds from recycled styrenic polymers using headspace solid-phase microextraction gas chromatography-mass spectrometry. J Chromatogr A. 2010 Jan 15;1217(3):359-67. doi: 10.1016/j.chroma.2009.11.057. Epub 2009 Nov 20. [PubMed:19963220 ]
  7. Watkins AL, Landis CR: Origin of pressure effects on regioselectivity and enantioselectivity in the rhodium-catalyzed hydroformylation of styrene with (S,S,S)-BisDiazaphos. J Am Chem Soc. 2010 Aug 4;132(30):10306-17. doi: 10.1021/ja909619a. [PubMed:20662513 ]
  8. Agrawal MK, Ghosh PK: Halonium ion-assisted deiodination of styrene-based vicinal iodohydrins followed by rearrangement through phenyl migration. J Org Chem. 2009 Oct 16;74(20):7947-50. doi: 10.1021/jo9013707. [PubMed:19764730 ]
  9. Kjeldmand L, Salazar LT, Laska M: Olfactory sensitivity for sperm-attractant aromatic aldehydes: a comparative study in human subjects and spider monkeys. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2011 Jan;197(1):15-23. doi: 10.1007/s00359-010-0580-y. Epub 2010 Sep 7. [PubMed:20820786 ]
  10. Casey CP, Martins SC, Fagan MA: Reversal of enantioselectivity in the hydroformylation of styrene with [2S,4S-BDPP]Pt(SnCl3)Cl at high temperature arises from a change in the enantioselective-determining step. J Am Chem Soc. 2004 May 5;126(17):5585-92. [PubMed:15113230 ]
  11. Youn B, Kim SJ, Moinuddin SG, Lee C, Bedgar DL, Harper AR, Davin LB, Lewis NG, Kang C: Mechanistic and structural studies of apoform, binary, and ternary complexes of the Arabidopsis alkenal double bond reductase At5g16970. J Biol Chem. 2006 Dec 29;281(52):40076-88. Epub 2006 Oct 6. [PubMed:17028190 ]
  12. Vukovic N, Sukdolak S, Solujic S, Niciforovic N: Antimicrobial activity of the essential oil obtained from roots and chemical composition of the volatile constituents from the roots, stems, and leaves of Ballota nigra from Serbia. J Med Food. 2009 Apr;12(2):435-41. doi: 10.1089/jmf.2008.0164. [PubMed:19459749 ]
  13. Toogood HS, Fryszkowska A, Hulley M, Sakuma M, Mansell D, Stephens GM, Gardiner JM, Scrutton NS: A site-saturated mutagenesis study of pentaerythritol tetranitrate reductase reveals that residues 181 and 184 influence ligand binding, stereochemistry and reactivity. Chembiochem. 2011 Mar 21;12(5):738-49. doi: 10.1002/cbic.201000662. Epub 2011 Mar 4. [PubMed:21374779 ]
  14. Lazny R, Nodzewska A, Sienkiewicz M, Wolosewicz K: Strategy for the synthesis of polymeric supports with hydrazone linkers for solid-phase alkylation of ketones and aldehydes. J Comb Chem. 2005 Jan-Feb;7(1):109-16. [PubMed:15638489 ]
  15. (). Yannai, Shmuel. (2004) Dictionary of food compounds with CD-ROM: Additives, flavors, and ingredients. Boca Raton: Chapman & Hall/CRC.. .

Enzymes

General function:
Involved in oxidoreductase activity
Specific function:
NADPH-dependent reductase with broad substrate specificity. Catalyzes the reduction of a wide variety of carbonyl compounds including quinones, prostaglandins, menadione, plus various xenobiotics. Catalyzes the reduction of the antitumor anthracyclines doxorubicin and daunorubicin to the cardiotoxic compounds doxorubicinol and daunorubicinol. Can convert prostaglandin E2 to prostaglandin F2-alpha. Can bind glutathione, which explains its higher affinity for glutathione-conjugated substrates. Catalyzes the reduction of S-nitrosoglutathione.
Gene Name:
CBR1
Uniprot ID:
P16152
Molecular weight:
30374.73
Reactions
3-Phenylpropanal → 3-Phenyl-1-propanoldetails