Hmdb loader
Record Information
Version5.0
StatusDetected and Quantified
Creation Date2008-12-10 02:06:59 UTC
Update Date2022-03-07 02:51:05 UTC
HMDB IDHMDB0011289
Secondary Accession Numbers
  • HMDB11289
Metabolite Identification
Common NamePC(P-18:1(11Z)/22:0)
DescriptionPC(P-18:1(11Z)/22:0) is a phosphatidylcholine (PC or GPCho). It is a glycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphocholines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PC(P-18:1(11Z)/22:0), in particular, consists of one chain of plasmalogen 18:1n7 at the C-1 position and one chain of behenic acid at the C-2 position. The plasmalogen 18:1n7 moiety is derived from animal fats, liver and kidney, while the behenic acid moiety is derived from groundnut oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PCs can be synthesized via three different routes. In one route, choline is activated first by phosphorylation and then by coupling to CDP prior to attachment to phosphatidic acid. PCs can also synthesized by the addition of choline to CDP-activated 1,2-diacylglycerol. A third route to PC synthesis involves the conversion of either PS or PE to PC. Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.
Structure
Data?1582752889
Synonyms
ValueSource
1-(1-Enyl-vaccenoyl)-2-behenoyl-sn-glycero-3-phosphocholineHMDB
Chemical FormulaC48H94NO7P
Average Molecular Weight828.2362
Monoisotopic Molecular Weight827.676790879
IUPAC Name(2-{[2-(docosanoyloxy)-3-[(1Z,11Z)-octadeca-1,11-dien-1-yloxy]propyl phosphonato]oxy}ethyl)trimethylazanium
Traditional Name(2-{[2-(docosanoyloxy)-3-[(1Z,11Z)-octadeca-1,11-dien-1-yloxy]propyl phosphonato]oxy}ethyl)trimethylazanium
CAS Registry NumberNot Available
SMILES
CCCCCCCCCCCCCCCCCCCCCC(=O)OC(CO\C=C/CCCCCCCC\C=C/CCCCCC)COP([O-])(=O)OCC[N+](C)(C)C
InChI Identifier
InChI=1S/C48H94NO7P/c1-6-8-10-12-14-16-18-20-22-24-25-26-27-29-31-33-35-37-39-41-48(50)56-47(46-55-57(51,52)54-44-42-49(3,4)5)45-53-43-40-38-36-34-32-30-28-23-21-19-17-15-13-11-9-7-2/h17,19,40,43,47H,6-16,18,20-39,41-42,44-46H2,1-5H3/b19-17-,43-40-
InChI KeyWHHKBOSTSUCUSE-WMUWNWGGSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as 1-(1z-alkenyl),2-acyl-glycerophosphocholines. These are glycerophosphocholines that carry exactly one acyl chain attached to the glycerol moiety through an ester linkage at the O2-position, and one 1Z-alkenyl chain attached through an ether linkage at the O1-position.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassGlycerophospholipids
Sub ClassGlycerophosphocholines
Direct Parent1-(1Z-alkenyl),2-acyl-glycerophosphocholines
Alternative Parents
Substituents
  • 1-(1z-alkenyl),2-acyl-glycerophosphocholine
  • Phosphocholine
  • Glycerol vinyl ether
  • Fatty acid ester
  • Dialkyl phosphate
  • Organic phosphoric acid derivative
  • Phosphoric acid ester
  • Alkyl phosphate
  • Fatty acyl
  • Quaternary ammonium salt
  • Tetraalkylammonium salt
  • Carboxylic acid ester
  • Monocarboxylic acid or derivatives
  • Carboxylic acid derivative
  • Amine
  • Organic oxide
  • Organopnictogen compound
  • Organooxygen compound
  • Organonitrogen compound
  • Organic oxygen compound
  • Organic nitrogen compound
  • Carbonyl group
  • Hydrocarbon derivative
  • Organic salt
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External DescriptorsNot Available
Ontology
Physiological effect
Disposition
Process
Role
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Experimental Chromatographic PropertiesNot Available
Predicted Molecular Properties
PropertyValueSource
Water Solubility2.1e-05 g/LALOGPS
logP6.74ALOGPS
logP11.7ChemAxon
logS-7.6ALOGPS
pKa (Strongest Acidic)1.86ChemAxon
pKa (Strongest Basic)-4.7ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count4ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area94.12 ŲChemAxon
Rotatable Bond Count46ChemAxon
Refractivity254.13 m³·mol⁻¹ChemAxon
Polarizability105.43 ųChemAxon
Number of Rings0ChemAxon
BioavailabilityNoChemAxon
Rule of FiveNoChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
Predicted Chromatographic Properties

Predicted Collision Cross Sections

PredictorAdduct TypeCCS Value (Å2)Reference
DeepCCS[M+H]+308.6330932474
DeepCCS[M-H]-306.5630932474
DeepCCS[M-2H]-339.830932474
DeepCCS[M+Na]+314.54330932474
AllCCS[M+H]+304.032859911
AllCCS[M+H-H2O]+303.932859911
AllCCS[M+NH4]+304.132859911
AllCCS[M+Na]+304.132859911
AllCCS[M-H]-294.232859911
AllCCS[M+Na-2H]-298.332859911
AllCCS[M+HCOO]-302.932859911

Predicted Kovats Retention Indices

Underivatized

MetaboliteSMILESKovats RI ValueColumn TypeReference
PC(P-18:1(11Z)/22:0)CCCCCCCCCCCCCCCCCCCCCC(=O)OC(CO\C=C/CCCCCCCC\C=C/CCCCCC)COP([O-])(=O)OCC[N+](C)(C)C5405.7Standard polar33892256
PC(P-18:1(11Z)/22:0)CCCCCCCCCCCCCCCCCCCCCC(=O)OC(CO\C=C/CCCCCCCC\C=C/CCCCCC)COP([O-])(=O)OCC[N+](C)(C)C4964.1Standard non polar33892256
PC(P-18:1(11Z)/22:0)CCCCCCCCCCCCCCCCCCCCCC(=O)OC(CO\C=C/CCCCCCCC\C=C/CCCCCC)COP([O-])(=O)OCC[N+](C)(C)C5503.1Semi standard non polar33892256
Spectra

MS/MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - PC(P-18:1(11Z)/22:0) 10V, Negative-QTOFsplash10-03di-0000000090-e58ae67343e2207d09872021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - PC(P-18:1(11Z)/22:0) 20V, Negative-QTOFsplash10-03di-0000000090-e58ae67343e2207d09872021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - PC(P-18:1(11Z)/22:0) 40V, Negative-QTOFsplash10-03kl-0004920170-544c25b0485d8461d83e2021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - PC(P-18:1(11Z)/22:0) 10V, Positive-QTOFsplash10-004i-0000000090-caf59510d6707c21da942021-09-23Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - PC(P-18:1(11Z)/22:0) 20V, Positive-QTOFsplash10-003r-0900000050-5a6451c8c428b43b60062021-09-23Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - PC(P-18:1(11Z)/22:0) 40V, Positive-QTOFsplash10-00q9-1900141690-2aad2c5bbe4ca1fae3992021-09-23Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - PC(P-18:1(11Z)/22:0) 10V, Negative-QTOFsplash10-004i-0000000090-808d4510c97d542db5e02021-09-24Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - PC(P-18:1(11Z)/22:0) 20V, Negative-QTOFsplash10-004i-0023002290-cd7e8f4605e35ac7306a2021-09-24Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - PC(P-18:1(11Z)/22:0) 40V, Negative-QTOFsplash10-00kr-5019700000-9093de0aa4256d4dd2192021-09-24Wishart LabView Spectrum
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane
Biospecimen Locations
  • Blood
  • Feces
Tissue Locations
  • All Tissues
Pathways
Normal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified0.35 (0.3-0.42) uMNewborn (0-30 days old)Not Available
Normal
details
BloodDetected and Quantified0.44(0.12) uMAdult (>18 years old)BothNormal details
BloodDetected and Quantified0.39 (0.33-0.45) uMInfant (0-1 year old)Not Available
Normal
details
BloodDetected and Quantified0.45 (0.30-1.42) uMAdolescent (13-18 years old)Both
Normal
details
BloodDetected and Quantified0.39 +/- 0.10 uMAdult (>18 years old)BothNormal details
FecesDetected and Quantified0.7 +/- 0.46 nmol/g wet fecesAdult (>18 years old)Both
Normal
details
FecesDetected and Quantified0.66 +/- 0.41 nmol/g wet fecesAdult (>18 years old)Both
Normal
details
Abnormal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified0.44 (0.26-0.84) uMAdolescent (13-18 years old)Both
Pain or fever
details
BloodDetected and Quantified0.34 (0.28-0.94) uMAdolescent (13-18 years old)Both
Acetaminophen overdose
details
BloodDetected and Quantified0.39(0.09) uMAdult (>18 years old)BothHeart failure with reduced ejection fraction details
BloodDetected and Quantified0.5856 (0.3525) uMAdult (>18 years old)FemalePregnancy with fetus having congenital heart defect details
BloodDetected and Quantified0.6059 (0.1541) uMAdult (>18 years old)FemalePregnancy details
Predicted Concentrations
BiospecimenValueOriginal ageOriginal sexOriginal conditionComments
Blood0.811 +/- 0.151 uMAdult (>18 years old)BothNormal (Upper Limit)Concentration data updated from parsing Nick's...
Blood0.000 +/- 0.000 uMAdult (>18 years old)BothNormal (Most Probable)Concentration data updated from parsing Nick's...
Associated Disorders and Diseases
Disease References
Pregnancy
  1. Bahado-Singh RO, Ertl R, Mandal R, Bjorndahl TC, Syngelaki A, Han B, Dong E, Liu PB, Alpay-Savasan Z, Wishart DS, Nicolaides KH: Metabolomic prediction of fetal congenital heart defect in the first trimester. Am J Obstet Gynecol. 2014 Sep;211(3):240.e1-240.e14. doi: 10.1016/j.ajog.2014.03.056. Epub 2014 Apr 1. [PubMed:24704061 ]
Associated OMIM IDsNone
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDNot Available
KNApSAcK IDNot Available
Chemspider IDNot Available
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound53480769
PDB IDNot Available
ChEBI IDNot Available
Food Biomarker OntologyNot Available
VMH IDNot Available
MarkerDB IDMDB00030045
Good Scents IDNot Available
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Simons K, Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31-9. [PubMed:11413487 ]
  2. Watson AD: Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res. 2006 Oct;47(10):2101-11. Epub 2006 Aug 10. [PubMed:16902246 ]
  3. Sethi JK, Vidal-Puig AJ: Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007 Jun;48(6):1253-62. Epub 2007 Mar 20. [PubMed:17374880 ]
  4. Lingwood D, Simons K: Lipid rafts as a membrane-organizing principle. Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621. [PubMed:20044567 ]
  5. Divecha N, Irvine RF: Phospholipid signaling. Cell. 1995 Jan 27;80(2):269-78. [PubMed:7834746 ]
  6. Cevc, Gregor (1993). Phospholipids Handbook. Marcel Dekker.
  7. Gunstone, Frank D., John L. Harwood, and Albert J. Dijkstra (2007). The lipid handbook with CD-ROM. CRC Press.

Only showing the first 10 proteins. There are 72 proteins in total.

Enzymes

General function:
Involved in phospholipase A2 activity
Specific function:
PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. This isozyme hydrolyzes more efficiently L-alpha-1-palmitoyl-2-oleoyl phosphatidylcholine than L-alpha-1-palmitoyl-2-arachidonyl phosphatidylcholine, L-alpha-1-palmitoyl-2-arachidonyl phosphatidylethanolamine, or L-alpha-1-stearoyl-2-arachidonyl phosphatidylinositol. May be involved in the production of lung surfactant, the remodeling or regulation of cardiac muscle.
Gene Name:
PLA2G5
Uniprot ID:
P39877
Molecular weight:
15674.065
General function:
Involved in phospholipase A2 activity
Specific function:
PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. Hydrolyzes phosphatidylglycerol versus phosphatidylcholine with a 15-fold preference.
Gene Name:
PLA2G2F
Uniprot ID:
Q9BZM2
Molecular weight:
23256.29
General function:
Involved in metabolic process
Specific function:
Selectively hydrolyzes arachidonyl phospholipids in the sn-2 position releasing arachidonic acid. Together with its lysophospholipid activity, it is implicated in the initiation of the inflammatory response.
Gene Name:
PLA2G4A
Uniprot ID:
P47712
Molecular weight:
85210.19
General function:
Involved in phospholipase A2 activity
Specific function:
PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides.
Gene Name:
PLA2G1B
Uniprot ID:
P04054
Molecular weight:
16359.535
General function:
Involved in phospholipase A2 activity
Specific function:
PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. Has a powerful potency for releasing arachidonic acid from cell membrane phospholipids. Prefers phosphatidylethanolamine and phosphatidylcholine liposomes to those of phosphatidylserine.
Gene Name:
PLA2G10
Uniprot ID:
O15496
Molecular weight:
18153.04
General function:
Involved in phospholipase A2 activity
Specific function:
PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. Has a preference for arachidonic-containing phospholipids.
Gene Name:
PLA2G2E
Uniprot ID:
Q9NZK7
Molecular weight:
15988.525
General function:
Involved in phospholipase A2 activity
Specific function:
PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. Does not exhibit detectable activity toward sn-2-arachidonoyl- or linoleoyl-phosphatidylcholine or -phosphatidylethanolamine.
Gene Name:
PLA2G12A
Uniprot ID:
Q9BZM1
Molecular weight:
21066.99
General function:
Involved in metabolic process
Specific function:
Catalyzes the release of fatty acids from phospholipids. It has been implicated in normal phospholipid remodeling, nitric oxide-induced or vasopressin-induced arachidonic acid release and in leukotriene and prostaglandin production. May participate in fas mediated apoptosis and in regulating transmembrane ion flux in glucose-stimulated B-cells. Has a role in cardiolipin (CL) deacylation. Required for both speed and directionality of monocyte MCP1/CCL2-induced chemotaxis through regulation of F-actin polymerization at the pseudopods. Isoform ankyrin-iPLA2-1 and isoform ankyrin-iPLA2-2, which lack the catalytic domain, are probably involved in the negative regulation of iPLA2 activity.
Gene Name:
PLA2G6
Uniprot ID:
O60733
Molecular weight:
84092.635
General function:
Involved in phosphatidylcholine-sterol O-acyltransferase activity
Specific function:
Central enzyme in the extracellular metabolism of plasma lipoproteins. Synthesized mainly in the liver and secreted into plasma where it converts cholesterol and phosphatidylcholines (lecithins) to cholesteryl esters and lysophosphatidylcholines on the surface of high and low density lipoproteins (HDLs and LDLs). The cholesterol ester is then transported back to the liver. Has a preference for plasma 16:0-18:2 or 18:O-18:2 phosphatidylcholines. Also produced in the brain by primary astrocytes, and esterifies free cholesterol on nascent APOE-containing lipoproteins secreted from glia and influences cerebral spinal fluid (CSF) APOE- and APOA1 levels. Together with APOE and the cholesterol transporter ABCA1, plays a key role in the maturation of glial-derived, nascent lipoproteins. Required for remodeling high-density lipoprotein particles into their spherical forms.
Gene Name:
LCAT
Uniprot ID:
P04180
Molecular weight:
49577.545
General function:
Involved in phospholipase A2 activity
Specific function:
Thought to participate in the regulation of the phospholipid metabolism in biomembranes including eicosanoid biosynthesis. Catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides.
Gene Name:
PLA2G2A
Uniprot ID:
P14555
Molecular weight:
16082.525

Transporters

General function:
Involved in ATP binding
Specific function:
Mediates ATP-dependent export of organic anions and drugs from the cytoplasm. Hydrolyzes ATP with low efficiency. Human MDR3 is not capable of conferring drug resistance. Mediates the translocation of phosphatidylcholine across the canalicular membrane of the hepatocyte
Gene Name:
ABCB4
Uniprot ID:
P21439
Molecular weight:
141521.8

Only showing the first 10 proteins. There are 72 proteins in total.