Hmdb loader
Record Information
Version5.0
StatusDetected but not Quantified
Creation Date2008-10-29 14:53:30 UTC
Update Date2022-11-30 19:03:55 UTC
HMDB IDHMDB0011154
Secondary Accession Numbers
  • HMDB11154
Metabolite Identification
Common NameLysoPA(P-16:0/0:0)
Description1-(1Z-hexadecenyl)-sn-glycero-3-phosphate is an intermediate of ether lipid metabolism. Ether lipids are lipids in which one or more of the carbon atoms on glycerol is bonded to an alkyl chain via an ether linkage, as opposed to the usual ester linkage. 1-(1Z-hexadecenyl)-sn-glycero-3-phosphate is irreversibly produced from 1-(1Z-hexadecenyl)-sn-glycero-3-phosphoethanolamine via the enzyme alkylglycerophosphoethanolamine phosphodiesterase (EC: 3.1.4.39). Plasmalogens are glycerol ether phospholipids. They are of two types, alkyl ether (-O-CH2-) and alkenyl ether (-O-CH=CH-). Dihydroxyacetone phosphate (DHAP) serves as the glycerol precursor for the synthesis of plasmalogens. Three major classes of plasmalogens have been identified: choline, ethanolamine and serine derivatives. Ethanolamine plasmalogen is prevalent in myelin. Choline plasmalogen is abundant in cardiac tissue. Usually, the highest proportion of the plasmalogen form is in the ethanolamine class with rather less in choline, and commonly little or none in other phospholipids such as phosphatidylinositol. In choline plasmalogens of most tissues, a higher proportion is often of the O-alkyl rather than the O-alkenyl form, but the reverse tends to be true in heart lipids. In animal tissues, the alkyl and alkenyl moieties in both non-polar and phospholipids tend to be rather simple in composition with 16:0, 18:0 and 18:1 (double bond in position 9) predominating. Ether analogues of triacylglycerols, i.e. 1-alkyldiacyl-sn-glycerols, are present at trace levels only if at all in most animal tissues, but they can be major components of some marine lipids.
Structure
Data?1582752874
Synonyms
ValueSource
1-(1Z-Hexadecenyl)-sn-glycero-3-phosphateHMDB
1-(1Z-Hexadecenyl)-glycero-3-phosphateHMDB
1-(1Z-Hexadecenyl)-lysophosphatidic acidHMDB
LPA(16:1)HMDB
LPA(p-16:0)HMDB
LPA(p-16:0/0:0)HMDB
LysoPA(16:1)HMDB
LysoPA(p-16:0)HMDB
Lysophosphatidic acid(16:1)HMDB
Lysophosphatidic acid(p-16:0)HMDB
Lysophosphatidic acid(p-16:0/0:0)HMDB
LPA(O-16:1(1Z))HMDB
LPA(O-16:1(1Z)/0:0)HMDB
LysoPA(O-16:1(1Z))HMDB
LysoPA(O-16:1(1Z)/0:0)HMDB
Lysophosphatidic acid(O-16:1(1Z))HMDB
Lysophosphatidic acid(O-16:1(1Z)/0:0)HMDB
LysoPA(P-16:0/0:0)HMDB
Chemical FormulaC19H39O6P
Average Molecular Weight394.4831
Monoisotopic Molecular Weight394.248425492
IUPAC Name[(2R)-3-[(1Z)-hexadec-1-en-1-yloxy]-2-hydroxypropoxy]phosphonic acid
Traditional Name(2R)-3-[(1Z)-hexadec-1-en-1-yloxy]-2-hydroxypropoxyphosphonic acid
CAS Registry NumberNot Available
SMILES
CCCCCCCCCCCCCC\C=C/OC[C@](O)([H])COP(=O)(O)O
InChI Identifier
InChI=1S/C19H39O6P/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-24-17-19(20)18-25-26(21,22)23/h15-16,19-20H,2-14,17-18H2,1H3,(H2,21,22,23)/b16-15-/t19-/m1/s1
InChI KeyLBGSRVIXIVDRQM-OAXWQBPPSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as glycerophosphates. Glycerophosphates are compounds containing a glycerol linked to a phosphate group.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassGlycerophospholipids
Sub ClassGlycerophosphates
Direct ParentGlycerophosphates
Alternative Parents
Substituents
  • Sn-glycerol-3-phosphate
  • Glycerol vinyl ether
  • Monoalkyl phosphate
  • Alkyl phosphate
  • Phosphoric acid ester
  • Organic phosphoric acid derivative
  • Secondary alcohol
  • Organic oxygen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Organooxygen compound
  • Alcohol
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Ontology
Physiological effectNot Available
Disposition
ProcessNot Available
RoleNot Available
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Experimental Chromatographic PropertiesNot Available
Predicted Molecular Properties
PropertyValueSource
Water Solubility0.0033 g/LALOGPS
logP4.81ALOGPS
logP5.35ChemAxon
logS-5.1ALOGPS
pKa (Strongest Acidic)1.51ChemAxon
pKa (Strongest Basic)-3.4ChemAxon
Physiological Charge-2ChemAxon
Hydrogen Acceptor Count5ChemAxon
Hydrogen Donor Count3ChemAxon
Polar Surface Area96.22 ŲChemAxon
Rotatable Bond Count19ChemAxon
Refractivity105.32 m³·mol⁻¹ChemAxon
Polarizability45.38 ųChemAxon
Number of Rings0ChemAxon
BioavailabilityNoChemAxon
Rule of FiveNoChemAxon
Ghose FilterYesChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
Predicted Chromatographic Properties

Predicted Collision Cross Sections

PredictorAdduct TypeCCS Value (Å2)Reference
DarkChem[M+H]+201.06931661259
DarkChem[M-H]-195.33231661259
DeepCCS[M+H]+198.07530932474
DeepCCS[M-H]-194.62230932474
DeepCCS[M-2H]-230.12130932474
DeepCCS[M+Na]+206.41230932474
AllCCS[M+H]+202.432859911
AllCCS[M+H-H2O]+200.232859911
AllCCS[M+NH4]+204.432859911
AllCCS[M+Na]+205.032859911
AllCCS[M-H]-197.932859911
AllCCS[M+Na-2H]-199.832859911
AllCCS[M+HCOO]-202.032859911

Predicted Kovats Retention Indices

Underivatized

MetaboliteSMILESKovats RI ValueColumn TypeReference
LysoPA(P-16:0/0:0)CCCCCCCCCCCCCC\C=C/OC[C@](O)([H])COP(=O)(O)O3776.5Standard polar33892256
LysoPA(P-16:0/0:0)CCCCCCCCCCCCCC\C=C/OC[C@](O)([H])COP(=O)(O)O2629.8Standard non polar33892256
LysoPA(P-16:0/0:0)CCCCCCCCCCCCCC\C=C/OC[C@](O)([H])COP(=O)(O)O3022.3Semi standard non polar33892256

Derivatized

Derivative Name / StructureSMILESKovats RI ValueColumn TypeReference
LysoPA(P-16:0/0:0),1TMS,isomer #1CCCCCCCCCCCCCC/C=C\OC[C@H](COP(=O)(O)O)O[Si](C)(C)C3011.1Semi standard non polar33892256
LysoPA(P-16:0/0:0),1TMS,isomer #2CCCCCCCCCCCCCC/C=C\OC[C@@H](O)COP(=O)(O)O[Si](C)(C)C2990.2Semi standard non polar33892256
LysoPA(P-16:0/0:0),2TMS,isomer #1CCCCCCCCCCCCCC/C=C\OC[C@H](COP(=O)(O)O[Si](C)(C)C)O[Si](C)(C)C2997.6Semi standard non polar33892256
LysoPA(P-16:0/0:0),2TMS,isomer #1CCCCCCCCCCCCCC/C=C\OC[C@H](COP(=O)(O)O[Si](C)(C)C)O[Si](C)(C)C2822.9Standard non polar33892256
LysoPA(P-16:0/0:0),2TMS,isomer #1CCCCCCCCCCCCCC/C=C\OC[C@H](COP(=O)(O)O[Si](C)(C)C)O[Si](C)(C)C3496.2Standard polar33892256
LysoPA(P-16:0/0:0),2TMS,isomer #2CCCCCCCCCCCCCC/C=C\OC[C@@H](O)COP(=O)(O[Si](C)(C)C)O[Si](C)(C)C2980.4Semi standard non polar33892256
LysoPA(P-16:0/0:0),2TMS,isomer #2CCCCCCCCCCCCCC/C=C\OC[C@@H](O)COP(=O)(O[Si](C)(C)C)O[Si](C)(C)C2835.6Standard non polar33892256
LysoPA(P-16:0/0:0),2TMS,isomer #2CCCCCCCCCCCCCC/C=C\OC[C@@H](O)COP(=O)(O[Si](C)(C)C)O[Si](C)(C)C3221.6Standard polar33892256
LysoPA(P-16:0/0:0),3TMS,isomer #1CCCCCCCCCCCCCC/C=C\OC[C@H](COP(=O)(O[Si](C)(C)C)O[Si](C)(C)C)O[Si](C)(C)C2989.5Semi standard non polar33892256
LysoPA(P-16:0/0:0),3TMS,isomer #1CCCCCCCCCCCCCC/C=C\OC[C@H](COP(=O)(O[Si](C)(C)C)O[Si](C)(C)C)O[Si](C)(C)C2859.7Standard non polar33892256
LysoPA(P-16:0/0:0),3TMS,isomer #1CCCCCCCCCCCCCC/C=C\OC[C@H](COP(=O)(O[Si](C)(C)C)O[Si](C)(C)C)O[Si](C)(C)C3015.0Standard polar33892256
LysoPA(P-16:0/0:0),1TBDMS,isomer #1CCCCCCCCCCCCCC/C=C\OC[C@H](COP(=O)(O)O)O[Si](C)(C)C(C)(C)C3240.8Semi standard non polar33892256
LysoPA(P-16:0/0:0),1TBDMS,isomer #2CCCCCCCCCCCCCC/C=C\OC[C@@H](O)COP(=O)(O)O[Si](C)(C)C(C)(C)C3208.2Semi standard non polar33892256
LysoPA(P-16:0/0:0),2TBDMS,isomer #1CCCCCCCCCCCCCC/C=C\OC[C@H](COP(=O)(O)O[Si](C)(C)C(C)(C)C)O[Si](C)(C)C(C)(C)C3442.3Semi standard non polar33892256
LysoPA(P-16:0/0:0),2TBDMS,isomer #1CCCCCCCCCCCCCC/C=C\OC[C@H](COP(=O)(O)O[Si](C)(C)C(C)(C)C)O[Si](C)(C)C(C)(C)C3138.3Standard non polar33892256
LysoPA(P-16:0/0:0),2TBDMS,isomer #1CCCCCCCCCCCCCC/C=C\OC[C@H](COP(=O)(O)O[Si](C)(C)C(C)(C)C)O[Si](C)(C)C(C)(C)C3553.2Standard polar33892256
LysoPA(P-16:0/0:0),2TBDMS,isomer #2CCCCCCCCCCCCCC/C=C\OC[C@@H](O)COP(=O)(O[Si](C)(C)C(C)(C)C)O[Si](C)(C)C(C)(C)C3423.6Semi standard non polar33892256
LysoPA(P-16:0/0:0),2TBDMS,isomer #2CCCCCCCCCCCCCC/C=C\OC[C@@H](O)COP(=O)(O[Si](C)(C)C(C)(C)C)O[Si](C)(C)C(C)(C)C3122.8Standard non polar33892256
LysoPA(P-16:0/0:0),2TBDMS,isomer #2CCCCCCCCCCCCCC/C=C\OC[C@@H](O)COP(=O)(O[Si](C)(C)C(C)(C)C)O[Si](C)(C)C(C)(C)C3358.9Standard polar33892256
LysoPA(P-16:0/0:0),3TBDMS,isomer #1CCCCCCCCCCCCCC/C=C\OC[C@H](COP(=O)(O[Si](C)(C)C(C)(C)C)O[Si](C)(C)C(C)(C)C)O[Si](C)(C)C(C)(C)C3661.2Semi standard non polar33892256
LysoPA(P-16:0/0:0),3TBDMS,isomer #1CCCCCCCCCCCCCC/C=C\OC[C@H](COP(=O)(O[Si](C)(C)C(C)(C)C)O[Si](C)(C)C(C)(C)C)O[Si](C)(C)C(C)(C)C3271.3Standard non polar33892256
LysoPA(P-16:0/0:0),3TBDMS,isomer #1CCCCCCCCCCCCCC/C=C\OC[C@H](COP(=O)(O[Si](C)(C)C(C)(C)C)O[Si](C)(C)C(C)(C)C)O[Si](C)(C)C(C)(C)C3213.8Standard polar33892256
Spectra

GC-MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Predicted GC-MSPredicted GC-MS Spectrum - LysoPA(P-16:0/0:0) GC-MS (Non-derivatized) - 70eV, Positivesplash10-0002-9531000000-ecf25e4b5c790c3b72ed2017-09-01Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - LysoPA(P-16:0/0:0) GC-MS (1 TMS) - 70eV, Positivesplash10-01ot-9311000000-0e2b0f3208ece9cd4b072017-10-06Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - LysoPA(P-16:0/0:0) GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12Wishart LabView Spectrum

MS/MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - LysoPA(P-16:0/0:0) 10V, Positive-QTOFsplash10-0002-2289000000-b39c890fd77227f34b032017-09-01Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - LysoPA(P-16:0/0:0) 20V, Positive-QTOFsplash10-006t-7491000000-0ccf378d516936664e602017-09-01Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - LysoPA(P-16:0/0:0) 40V, Positive-QTOFsplash10-00di-8890000000-51c67ab4219e365f3eba2017-09-01Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - LysoPA(P-16:0/0:0) 10V, Negative-QTOFsplash10-002f-7239000000-c4129fe844e80844198b2017-09-01Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - LysoPA(P-16:0/0:0) 20V, Negative-QTOFsplash10-004i-9010000000-5d851393b928afd40d412017-09-01Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - LysoPA(P-16:0/0:0) 40V, Negative-QTOFsplash10-004i-9000000000-9acf499bba340234a84d2017-09-01Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - LysoPA(P-16:0/0:0) 10V, Negative-QTOFsplash10-0006-1009000000-ff72002b3f2b1c18ed442021-09-23Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - LysoPA(P-16:0/0:0) 20V, Negative-QTOFsplash10-004i-9001000000-bc8f7654f845648a306d2021-09-23Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - LysoPA(P-16:0/0:0) 40V, Negative-QTOFsplash10-004i-9000000000-a5e502a2627af2048a1f2021-09-23Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - LysoPA(P-16:0/0:0) 10V, Positive-QTOFsplash10-0002-3159000000-b84b2eb993b334f4b3d22021-09-24Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - LysoPA(P-16:0/0:0) 20V, Positive-QTOFsplash10-0002-8694000000-dfe7400fecee9e705ce12021-09-24Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - LysoPA(P-16:0/0:0) 40V, Positive-QTOFsplash10-052b-9100000000-97ff4447b932b70a8b722021-09-24Wishart LabView Spectrum
Biological Properties
Cellular Locations
  • Membrane (predicted from logP)
Biospecimen Locations
  • Feces
  • Urine
Tissue LocationsNot Available
Pathways
Normal Concentrations
Not Available
Abnormal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothCrohns disease details
FecesDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothIron deficiency details
UrineDetected but not QuantifiedNot QuantifiedAdult (>18 years old)FemaleEpithelial ovarian cancer details
Associated Disorders and Diseases
Disease References
Crohn's disease
  1. Lee T, Clavel T, Smirnov K, Schmidt A, Lagkouvardos I, Walker A, Lucio M, Michalke B, Schmitt-Kopplin P, Fedorak R, Haller D: Oral versus intravenous iron replacement therapy distinctly alters the gut microbiota and metabolome in patients with IBD. Gut. 2017 May;66(5):863-871. doi: 10.1136/gutjnl-2015-309940. Epub 2016 Feb 4. [PubMed:26848182 ]
Iron deficiency
  1. Lee T, Clavel T, Smirnov K, Schmidt A, Lagkouvardos I, Walker A, Lucio M, Michalke B, Schmitt-Kopplin P, Fedorak R, Haller D: Oral versus intravenous iron replacement therapy distinctly alters the gut microbiota and metabolome in patients with IBD. Gut. 2017 May;66(5):863-871. doi: 10.1136/gutjnl-2015-309940. Epub 2016 Feb 4. [PubMed:26848182 ]
Associated OMIM IDs
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDFDB027929
KNApSAcK IDNot Available
Chemspider ID24766520
KEGG Compound IDC15646
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem Compound52929772
PDB IDNot Available
ChEBI IDNot Available
Food Biomarker OntologyNot Available
VMH IDM00222
MarkerDB IDNot Available
Good Scents IDNot Available
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Simons K, Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31-9. [PubMed:11413487 ]
  2. Watson AD: Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. J Lipid Res. 2006 Oct;47(10):2101-11. Epub 2006 Aug 10. [PubMed:16902246 ]
  3. Sethi JK, Vidal-Puig AJ: Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007 Jun;48(6):1253-62. Epub 2007 Mar 20. [PubMed:17374880 ]
  4. Lingwood D, Simons K: Lipid rafts as a membrane-organizing principle. Science. 2010 Jan 1;327(5961):46-50. doi: 10.1126/science.1174621. [PubMed:20044567 ]
  5. Divecha N, Irvine RF: Phospholipid signaling. Cell. 1995 Jan 27;80(2):269-78. [PubMed:7834746 ]
  6. Cevc, Gregor (1993). Phospholipids Handbook. Marcel Dekker.
  7. Gunstone, Frank D., John L. Harwood, and Albert J. Dijkstra (2007). The lipid handbook with CD-ROM. CRC Press.

Only showing the first 10 proteins. There are 32 proteins in total.

Enzymes

General function:
Involved in catalytic activity
Specific function:
Hydrolyzes lysophospholipids to produce lysophosphatidic acid (LPA) in extracellular fluids. Major substrate is lysophosphatidylcholine. Also can act on sphingosylphosphphorylcholine producing sphingosine-1-phosphate, a modulator of cell motility. Can hydrolyze, in vitro, bis-pNPP, to some extent pNP-TMP, and barely ATP. Involved in several motility-related processes such as angiogenesis and neurite outgrowth. Acts as an angiogenic factor by stimulating migration of smooth muscle cells and microtubule formation. Stimulates migration of melanoma cells, probably via a pertussis toxin-sensitive G protein. May have a role in induction of parturition. Possible involvement in cell proliferation and adipose tissue development. Tumor cell motility-stimulating factor.
Gene Name:
ENPP2
Uniprot ID:
Q13822
Molecular weight:
98992.78
General function:
Involved in catalytic activity
Specific function:
Catalyzes the conversion of phosphatidic acid (PA) to diacylglycerol (DG). In addition it hydrolyzes lysophosphatidic acid (LPA), ceramide-1-phosphate (C-1-P) and sphingosine-1-phosphate (S-1-P). The relative catalytic efficiency is PA > C-1-P > LPA > S-1-P.
Gene Name:
PPAP2C
Uniprot ID:
O43688
Molecular weight:
32573.435
General function:
Involved in catalytic activity
Specific function:
Broad-specificity phosphohydrolase that dephosphorylates exogenous bioactive glycerolipids and sphingolipids. Catalyzes the conversion of phosphatidic acid (PA) to diacylglycerol (DG). Pivotal regulator of lysophosphatidic acid (LPA) signaling in the cardiovascular system. Major enzyme responsible of dephosphorylating LPA in platelets, which terminates signaling actions of LPA. May control circulating, and possibly also regulate localized, LPA levels resulting from platelet activation. It has little activity towards ceramide-1-phosphate (C-1-P) and sphingosine-1-phosphate (S-1-P). The relative catalytic efficiency is LPA > PA > S-1-P > C-1-P. It's down-regulation may contribute to the development of colon adenocarcinoma.
Gene Name:
PPAP2A
Uniprot ID:
O14494
Molecular weight:
32155.715
General function:
Involved in catalytic activity
Specific function:
Catalyzes the conversion of phosphatidic acid (PA) to diacylglycerol (DG). In addition it hydrolyzes lysophosphatidic acid (LPA), ceramide-1-phosphate (C-1-P) and sphingosine-1-phosphate (S-1-P). The relative catalytic efficiency is LPA = PA > C-1-P > S-1-P. May be involved in cell adhesion and in cell-cell interactions.
Gene Name:
PPAP2B
Uniprot ID:
O14495
Molecular weight:
35115.61
General function:
Involved in acyltransferase activity
Specific function:
Lysophoshatidylglycerol (LPG) specific acyltransferase that recognizes various acyl-CoAs and LPGs as substrates but demonstrates a clear preference for long chain saturated fatty acyl-CoAs and oleoyl-CoA as acyl donors. Prefers oleoyl-LPG over palmitoyl-LPG as an acyl receptor and oleoyl-CoA over lauroyl-CoA as an acyl donor
Gene Name:
LPGAT1
Uniprot ID:
Q92604
Molecular weight:
43089.1
General function:
Involved in binding
Specific function:
Non-receptor protein-tyrosine kinase implicated in signaling pathways involved in cell motility, proliferation and apoptosis. Activated by tyrosine-phosphorylation in response to either integrin clustering induced by cell adhesion or antibody cross-linking, or via G-protein coupled receptor (GPCR) occupancy by ligands such as bombesin or lysophosphatidic acid, or via LDL receptor occupancy. Plays a potential role in oncogenic transformations resulting in increased kinase activity
Gene Name:
PTK2
Uniprot ID:
Q05397
Molecular weight:
119232.0
General function:
Involved in binding
Specific function:
Involved in calcium induced regulation of ion channel and activation of the map kinase signaling pathway. May represent an important signaling intermediate between neuropeptide activated receptors or neurotransmitters that increase calcium flux and the downstream signals that regulate neuronal activity. Interacts with the SH2 domain of Grb2. May phosphorylate the voltage-gated potassium channel protein Kv1.2. Its activation is highly correlated with the stimulation of c-Jun N-terminal kinase activity. Involved in osmotic stress-dependent SNCA 'Tyr-125' phosphorylation
Gene Name:
PTK2B
Uniprot ID:
Q14289
Molecular weight:
115873.6
General function:
Involved in acyltransferase activity
Specific function:
Converts lysophosphatidic acid (LPA) into phosphatidic acid by incorporating an acyl moiety at the sn-2 position of the glycerol backbone. Acts on LPA containing saturated or unsaturated fatty acids C16:0-C20:4 at the sn-1 position using C18:1, C20:4 or C18:2-CoA as the acyl donor. Also acts on lysophosphatidylcholine, lysophosphatidylinositol and lysophosphatidylserine using C18:1 or C20:4-CoA.
Gene Name:
AGPAT3
Uniprot ID:
Q9NRZ7
Molecular weight:
43380.605
General function:
Lipid transport and metabolism
Specific function:
Converts lysophosphatidic acid (LPA) into phosphatidic acid by incorporating an acyl moiety at the sn-2 position of the glycerol backbone.
Gene Name:
AGPAT2
Uniprot ID:
O15120
Molecular weight:
27278.915
General function:
Involved in acyltransferase activity
Specific function:
Converts lysophosphatidic acid (LPA) into phosphatidic acid by incorporating an acyl moiety at the sn-2 position of the glycerol backbone.
Gene Name:
AGPAT1
Uniprot ID:
Q99943
Molecular weight:
31716.27

Only showing the first 10 proteins. There are 32 proteins in total.