Record Information |
---|
Version | 5.0 |
---|
Status | Detected and Quantified |
---|
Creation Date | 2005-11-16 15:48:42 UTC |
---|
Update Date | 2024-05-19 04:28:27 UTC |
---|
HMDB ID | HMDB0000159 |
---|
Secondary Accession Numbers | - HMDB0000612
- HMDB00159
- HMDB00612
|
---|
Metabolite Identification |
---|
Common Name | Phenylalanine |
---|
Description | Phenylalanine (Phe), also known as L-phenylalanine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (-NH2) and carboxyl (-COOH) functional groups, along with a side chain (R group) specific to each amino acid. L-phenylalanine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Phenylalanine is found in all organisms ranging from bacteria to plants to animals. It is classified as an aromatic, non-polar amino acid. In humans, phenylalanine is an essential amino acid and the precursor of the amino acid tyrosine. Like tyrosine, phenylalanine is also a precursor for catecholamines including tyramine, dopamine, epinephrine, and norepinephrine. Catecholamines are neurotransmitters that act as adrenalin-like substances. Interestingly, several psychotropic drugs (mescaline, morphine, codeine, and papaverine) also have phenylalanine as a constituent. Phenylalanine is highly concentrated in the human brain and plasma. Normal metabolism of phenylalanine requires biopterin, iron, niacin, vitamin B6, copper, and vitamin C. An average adult ingests 5 g of phenylalanine per day and may optimally need up to 8 g daily. Phenylalanine is highly concentrated in a number of high protein foods, such as meat, cottage cheese, and wheat germ. An additional dietary source of phenylalanine is artificial sweeteners containing aspartame (a methyl ester of the aspartic acid/phenylalanine dipeptide). As a general rule, aspartame should be avoided by phenylketonurics and pregnant women. When present in sufficiently high levels (>500 uM), phenylalanine can act as a neurotoxin and a metabotoxin. A neurotoxin is a compound that disrupts or attacks neural cells and neural tissue. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of phenylalanine are associated with at least five inborn errors of metabolism, including Hartnup disorder, hyperphenylalaninemia due to guanosine triphosphate cyclohydrolase deficiency, phenylketonuria (PKU), tyrosinemia type 2 (or Richner-Hanhart syndrome), and tyrosinemia type III (TYRO3). Phenylketonurics have elevated serum plasma levels of phenylalanine up to 400 times normal. High plasma concentrations of phenylalanine influence the blood-brain barrier transport of large neutral amino acids. The high plasma phenylalanine concentrations increase phenylalanine entry into the brain and restrict the entry of other large neutral amino acids (PMID: 19191004 ). Phenylalanine has been found to interfere with different cerebral enzyme systems. Untreated phenylketonuria (PKU) can lead to intellectual disability, seizures, behavioural problems, and mental disorders. It may also result in a musty smell and lighter skin. Classic PKU dramatically affects myelination and white matter tracts in untreated infants; this may be one major cause of neurological disorders associated with phenylketonuria. Mild phenylketonuria can act as an unsuspected cause of hyperactivity, learning problems, and other developmental problems in children. It has been recently suggested that PKU may resemble amyloid diseases, such as Alzheimer's disease and Parkinson's disease, due to the formation of toxic amyloid-like assemblies of phenylalanine (PMID: 22706200 ). Higher serum/plasma levels (>75 µmol/L) of phenylalanine are commonly seen in people suffering from heart failure, chronic inflammation or infections, as well those suffering from sepsis or septic shock (PMID: 31170548 ; PMID: 32618142 ). Normally most amino acid levels drop during inflammation or infection, so a rise in phenylalanine levels is considered unusual. While normal levels of phenylalanine are between 40-75 µmol/L, those in intensive care units with phenylalanine levels >110 µmol/L are at much greater risk of dying (PMID: 32618142 ). These moderately high levels of phenylalanine are not necessarily toxic, they are simply secondary indicators of something else that is seriously wrong. The metabolism of phenylalanine and its level in blood directly relates to the activity of the enzyme phenylalanine hydroxylase, which is functionally attenuated by high levels of inflammation. The attenuation of phenylalanine hydroxylase appears to be associated with insufficient tetrahydrobiopterin (BH4), the co‐factor for phenylalanine hydroxylase. In particular, inflammation‐induced production of reactive oxygen species (ROS) may consume a significant portion of BH4, thereby leaving phenylalanine unmetabolized. Pro‐inflammatory cytokine‐mediated inflammation also increases the production of neopterin at the expense of the production of BH4. Insufficient bioavailability of BH4 also leads to dysfunction in multiple systems, including nitric oxide synthase, tryptophan/kynurenine metabolism, the catecholamine pathway, the neural system, and thyroid hormone production (PMID: 32618142 ). High phenylalanine concentrations in septic patients may also reflect the breakdown of muscle tissues (leading to amino acid release) and the body’s differential metabolic capacity for different amino acids. Muscle tissue is easily able to oxidize branched chain amino acids to support its own energy requirements. Muscle tissue is also able to metabolize alanine, glycine, proline, aspartate, glutamate, histidine, glutamine and serine for gluconeogenesis, but aromatic amino acids such as phenylalanine and tyrosine as well as many cysteine-containing amino acids are not as easily metabolized. This may also account for the increase in the levels of phenylalanine and tyrosine seen during sepsis (PMID: 99098 ). Phenylalanine also has some potential benefits. Phenylalanine can act as an effective pain reliever. Its use in premenstrual syndrome and Parkinson's may enhance the effects of acupuncture and electric transcutaneous nerve stimulation (TENS). Phenylalanine and tyrosine, like L-DOPA, produce a catecholamine-like effect. Phenylalanine is better absorbed than tyrosine and may cause fewer headaches. Low phenylalanine diets have been prescribed for certain cancers with mixed results. For instance, some tumours use more phenylalanine than others (particularly melatonin-producing tumours called melanomas).Phenylalanine is elevated by a factor of two or more in the urine of patients with diet-controlled PKU or phenylketonuria (PMID: 37446577 ). |
---|
Structure | N[C@@H](CC1=CC=CC=C1)C(O)=O InChI=1S/C9H11NO2/c10-8(9(11)12)6-7-4-2-1-3-5-7/h1-5,8H,6,10H2,(H,11,12)/t8-/m0/s1 |
---|
Synonyms | Value | Source |
---|
(S)-2-Amino-3-phenylpropionic acid | ChEBI | (S)-alpha-Amino-beta-phenylpropionic acid | ChEBI | 3-Phenyl-L-alanine | ChEBI | beta-Phenyl-L-alanine | ChEBI | F | ChEBI | Phe | ChEBI | PHENYLALANINE | ChEBI | (S)-2-Amino-3-phenylpropionate | Generator | (S)-a-Amino-b-phenylpropionate | Generator | (S)-a-Amino-b-phenylpropionic acid | Generator | (S)-alpha-Amino-beta-phenylpropionate | Generator | (S)-Α-amino-β-phenylpropionate | Generator | (S)-Α-amino-β-phenylpropionic acid | Generator | b-Phenyl-L-alanine | Generator | Β-phenyl-L-alanine | Generator | (-)-beta-Phenylalanine | HMDB | (L)-Phenylalanine | HMDB | (S)-(-)-Phenylalanine | HMDB | (S)-2-Amino-3-phenylpropanoate | HMDB | (S)-2-Amino-3-phenylpropanoic acid | HMDB | (S)-alpha-Amino-benzenepropanoate | HMDB | (S)-alpha-Amino-benzenepropanoic acid | HMDB | (S)-alpha-Aminobenzenepropanoate | HMDB | (S)-alpha-Aminobenzenepropanoic acid | HMDB | (S)-alpha-Aminohydrocinnamate | HMDB | (S)-alpha-Aminohydrocinnamic acid | HMDB | (S)-Phenylalanine | HMDB | alpha-Aminohydrocinnamate | HMDB | alpha-Aminohydrocinnamic acid | HMDB | beta-Phenyl-alpha-alanine | HMDB | beta-Phenylalanine | HMDB | L-2-Amino-3-phenylpropionate | HMDB | L-2-Amino-3-phenylpropionic acid | HMDB | Phenyl-alanine | HMDB | Phenylalamine | HMDB | L-Isomer phenylalanine | HMDB | Phenylalanine, L isomer | HMDB | Phenylalanine, L-isomer | HMDB | Endorphenyl | HMDB | (6S)-Tetrahydrofolate | HMDB | (6S)-Tetrahydrofolic acid | HMDB | (6S)-THFA | HMDB | 5,6,7,8-Tetrahydrofolate | HMDB | Tetrahydrofolate | HMDB | THF | HMDB | 5,6,7,8-Tetrahydrofolic acid | HMDB |
|
---|
Chemical Formula | C9H11NO2 |
---|
Average Molecular Weight | 165.1891 |
---|
Monoisotopic Molecular Weight | 165.078978601 |
---|
IUPAC Name | (2S)-2-amino-3-phenylpropanoic acid |
---|
Traditional Name | L-phenylalanine |
---|
CAS Registry Number | 63-91-2 |
---|
SMILES | N[C@@H](CC1=CC=CC=C1)C(O)=O |
---|
InChI Identifier | InChI=1S/C9H11NO2/c10-8(9(11)12)6-7-4-2-1-3-5-7/h1-5,8H,6,10H2,(H,11,12)/t8-/m0/s1 |
---|
InChI Key | COLNVLDHVKWLRT-QMMMGPOBSA-N |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as phenylalanine and derivatives. Phenylalanine and derivatives are compounds containing phenylalanine or a derivative thereof resulting from reaction of phenylalanine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. |
---|
Kingdom | Organic compounds |
---|
Super Class | Organic acids and derivatives |
---|
Class | Carboxylic acids and derivatives |
---|
Sub Class | Amino acids, peptides, and analogues |
---|
Direct Parent | Phenylalanine and derivatives |
---|
Alternative Parents | |
---|
Substituents | - Phenylalanine or derivatives
- 3-phenylpropanoic-acid
- Alpha-amino acid
- Amphetamine or derivatives
- L-alpha-amino acid
- Aralkylamine
- Monocyclic benzene moiety
- Benzenoid
- Amino acid
- Carboxylic acid
- Monocarboxylic acid or derivatives
- Organic nitrogen compound
- Primary amine
- Organooxygen compound
- Organonitrogen compound
- Hydrocarbon derivative
- Primary aliphatic amine
- Organic oxide
- Carbonyl group
- Organopnictogen compound
- Organic oxygen compound
- Amine
- Aromatic homomonocyclic compound
|
---|
Molecular Framework | Aromatic homomonocyclic compounds |
---|
External Descriptors | |
---|
Ontology |
---|
Physiological effect | |
---|
Disposition | Biological locationSourceExogenous- Exogenous (HMDB: HMDB0000159)
FoodSoyBeverageHerb and spiceNutAquatic originFruitVegetableBaby foodAnimal originPulseCereal and cereal productBaking goodUnclassified food or beverageDishFat and oilMilk and milk productOther milk productFermented milk productUnfermented milk- Milk (Other mammals) (FooDB: FOOD00690)
- Milk (Human) (FooDB: FOOD00666)
- Milk (Cow) (FooDB: FOOD00618)
- Cow milk, pasteurized, vitamin A + D added, 0% fat (FooDB: FOOD00889)
- Cow milk, pasteurized, vitamin A + D added, 1% fat (FooDB: FOOD00890)
- Cow milk, pasteurized, vitamin A + D added, 2% fat (FooDB: FOOD00891)
- Cow milk, pasteurized, vitamin D added, 3.25% fat (FooDB: FOOD00892)
Fermented milk GourdConfectioneryCocoa and cocoa productCoffee and coffee productSnackEggTea
|
---|
Process | |
---|
Role | |
---|
Physical Properties |
---|
State | Solid |
---|
Experimental Molecular Properties | Property | Value | Reference |
---|
Melting Point | 283 °C | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | 26.9 mg/mL | Not Available | LogP | -1.38 | AVDEEF,A (1997) |
|
---|
Experimental Chromatographic Properties | Experimental Collision Cross Sections |
---|
Predicted Molecular Properties | |
---|
Predicted Chromatographic Properties | Predicted Collision Cross SectionsPredicted Kovats Retention IndicesUnderivatizedDerivatizedDerivative Name / Structure | SMILES | Kovats RI Value | Column Type | Reference |
---|
L-Phenylalanine,1TMS,isomer #1 | C[Si](C)(C)OC(=O)[C@@H](N)CC1=CC=CC=C1 | 1560.0 | Semi standard non polar | 33892256 | L-Phenylalanine,1TMS,isomer #2 | C[Si](C)(C)N[C@@H](CC1=CC=CC=C1)C(=O)O | 1640.3 | Semi standard non polar | 33892256 | L-Phenylalanine,2TMS,isomer #1 | C[Si](C)(C)N[C@@H](CC1=CC=CC=C1)C(=O)O[Si](C)(C)C | 1633.5 | Semi standard non polar | 33892256 | L-Phenylalanine,2TMS,isomer #1 | C[Si](C)(C)N[C@@H](CC1=CC=CC=C1)C(=O)O[Si](C)(C)C | 1685.3 | Standard non polar | 33892256 | L-Phenylalanine,2TMS,isomer #1 | C[Si](C)(C)N[C@@H](CC1=CC=CC=C1)C(=O)O[Si](C)(C)C | 1959.2 | Standard polar | 33892256 | L-Phenylalanine,2TMS,isomer #2 | C[Si](C)(C)N([C@@H](CC1=CC=CC=C1)C(=O)O)[Si](C)(C)C | 1794.9 | Semi standard non polar | 33892256 | L-Phenylalanine,2TMS,isomer #2 | C[Si](C)(C)N([C@@H](CC1=CC=CC=C1)C(=O)O)[Si](C)(C)C | 1745.4 | Standard non polar | 33892256 | L-Phenylalanine,2TMS,isomer #2 | C[Si](C)(C)N([C@@H](CC1=CC=CC=C1)C(=O)O)[Si](C)(C)C | 2109.2 | Standard polar | 33892256 | L-Phenylalanine,3TMS,isomer #1 | C[Si](C)(C)OC(=O)[C@H](CC1=CC=CC=C1)N([Si](C)(C)C)[Si](C)(C)C | 1829.0 | Semi standard non polar | 33892256 | L-Phenylalanine,3TMS,isomer #1 | C[Si](C)(C)OC(=O)[C@H](CC1=CC=CC=C1)N([Si](C)(C)C)[Si](C)(C)C | 1803.3 | Standard non polar | 33892256 | L-Phenylalanine,3TMS,isomer #1 | C[Si](C)(C)OC(=O)[C@H](CC1=CC=CC=C1)N([Si](C)(C)C)[Si](C)(C)C | 1930.1 | Standard polar | 33892256 | L-Phenylalanine,1TBDMS,isomer #1 | CC(C)(C)[Si](C)(C)OC(=O)[C@@H](N)CC1=CC=CC=C1 | 1804.5 | Semi standard non polar | 33892256 | L-Phenylalanine,1TBDMS,isomer #2 | CC(C)(C)[Si](C)(C)N[C@@H](CC1=CC=CC=C1)C(=O)O | 1869.4 | Semi standard non polar | 33892256 | L-Phenylalanine,2TBDMS,isomer #1 | CC(C)(C)[Si](C)(C)N[C@@H](CC1=CC=CC=C1)C(=O)O[Si](C)(C)C(C)(C)C | 2084.8 | Semi standard non polar | 33892256 | L-Phenylalanine,2TBDMS,isomer #1 | CC(C)(C)[Si](C)(C)N[C@@H](CC1=CC=CC=C1)C(=O)O[Si](C)(C)C(C)(C)C | 2095.0 | Standard non polar | 33892256 | L-Phenylalanine,2TBDMS,isomer #1 | CC(C)(C)[Si](C)(C)N[C@@H](CC1=CC=CC=C1)C(=O)O[Si](C)(C)C(C)(C)C | 2236.3 | Standard polar | 33892256 | L-Phenylalanine,2TBDMS,isomer #2 | CC(C)(C)[Si](C)(C)N([C@@H](CC1=CC=CC=C1)C(=O)O)[Si](C)(C)C(C)(C)C | 2238.1 | Semi standard non polar | 33892256 | L-Phenylalanine,2TBDMS,isomer #2 | CC(C)(C)[Si](C)(C)N([C@@H](CC1=CC=CC=C1)C(=O)O)[Si](C)(C)C(C)(C)C | 2161.9 | Standard non polar | 33892256 | L-Phenylalanine,2TBDMS,isomer #2 | CC(C)(C)[Si](C)(C)N([C@@H](CC1=CC=CC=C1)C(=O)O)[Si](C)(C)C(C)(C)C | 2295.2 | Standard polar | 33892256 | L-Phenylalanine,3TBDMS,isomer #1 | CC(C)(C)[Si](C)(C)OC(=O)[C@H](CC1=CC=CC=C1)N([Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C | 2497.1 | Semi standard non polar | 33892256 | L-Phenylalanine,3TBDMS,isomer #1 | CC(C)(C)[Si](C)(C)OC(=O)[C@H](CC1=CC=CC=C1)N([Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C | 2402.1 | Standard non polar | 33892256 | L-Phenylalanine,3TBDMS,isomer #1 | CC(C)(C)[Si](C)(C)OC(=O)[C@H](CC1=CC=CC=C1)N([Si](C)(C)C(C)(C)C)[Si](C)(C)C(C)(C)C | 2284.9 | Standard polar | 33892256 |
|
---|
| GC-MS SpectraSpectrum Type | Description | Splash Key | Deposition Date | Source | View |
---|
Experimental GC-MS | GC-MS Spectrum - Phenylalanine GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (2 TMS) | splash10-0fr6-1930000000-a37fbccaf826443ef70c | 2014-06-16 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - Phenylalanine GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (Non-derivatized) | splash10-014l-1940000000-537e2725d621246630c1 | 2014-06-16 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - Phenylalanine GC-EI-TOF (Pegasus III TOF-MS system, Leco; GC 6890, Agilent Technologies) (2 TMS) | splash10-00di-9630000000-ead0919f9a19d2352d80 | 2014-06-16 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - Phenylalanine GC-MS (1 TMS) | splash10-00di-2900000000-cb2d6dc4bf9515150328 | 2014-06-16 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - Phenylalanine GC-MS (2 TMS) | splash10-014l-2960000000-f77489792f0652dd5613 | 2014-06-16 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - Phenylalanine EI-B (Non-derivatized) | splash10-014l-0970000000-792b341dd28b9e30bac2 | 2017-09-12 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - Phenylalanine GC-EI-TOF (Non-derivatized) | splash10-0fr6-1930000000-a37fbccaf826443ef70c | 2017-09-12 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - Phenylalanine GC-EI-TOF (Non-derivatized) | splash10-014l-1940000000-537e2725d621246630c1 | 2017-09-12 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - Phenylalanine GC-EI-QQ (Non-derivatized) | splash10-0ul9-3659000000-b85be4e71798e2fdc47b | 2017-09-12 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - Phenylalanine GC-EI-TOF (Non-derivatized) | splash10-00di-9630000000-ead0919f9a19d2352d80 | 2017-09-12 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - Phenylalanine GC-MS (Non-derivatized) | splash10-00di-2900000000-cb2d6dc4bf9515150328 | 2017-09-12 | HMDB team, MONA, MassBank | View Spectrum | Experimental GC-MS | GC-MS Spectrum - Phenylalanine GC-MS (Non-derivatized) | splash10-014l-2960000000-f77489792f0652dd5613 | 2017-09-12 | HMDB team, MONA, MassBank | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - Phenylalanine GC-MS (Non-derivatized) - 70eV, Positive | splash10-006x-9600000000-df38fcb743d8f44fb876 | 2016-09-22 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - Phenylalanine GC-MS (1 TMS) - 70eV, Positive | splash10-00di-7900000000-f21569d2ec75b88e1bda | 2017-10-06 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - Phenylalanine GC-MS (Non-derivatized) - 70eV, Positive | Not Available | 2021-10-12 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - Phenylalanine GC-MS (Non-derivatized) - 70eV, Positive | Not Available | 2021-10-12 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - Phenylalanine GC-MS (TMS_1_2) - 70eV, Positive | Not Available | 2021-11-05 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - Phenylalanine GC-MS (TBDMS_1_1) - 70eV, Positive | Not Available | 2021-11-05 | Wishart Lab | View Spectrum | Predicted GC-MS | Predicted GC-MS Spectrum - Phenylalanine GC-MS (TBDMS_1_2) - 70eV, Positive | Not Available | 2021-11-05 | Wishart Lab | View Spectrum | MS | Mass Spectrum (Electron Ionization) | splash10-00dl-9300000000-4782928378caea601f9b | 2018-05-25 | Not Available | View Spectrum |
MS/MS SpectraSpectrum Type | Description | Splash Key | Deposition Date | Source | View |
---|
Experimental LC-MS/MS | LC-MS/MS Spectrum - Phenylalanine Quattro_QQQ 10V, Positive-QTOF (Annotated) | splash10-014i-0900000000-0f3b994108b8a9fd2a56 | 2012-07-24 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Phenylalanine Quattro_QQQ 25V, Positive-QTOF (Annotated) | splash10-0gb9-2900000000-c14d44c8a67621757f3d | 2012-07-24 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Phenylalanine Quattro_QQQ 40V, Positive-QTOF (Annotated) | splash10-004i-9300000000-08c642dab7f49c00da43 | 2012-07-24 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Phenylalanine LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positive-QTOF | splash10-014i-0900000000-7dce1e473976f7d2143e | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Phenylalanine LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positive-QTOF | splash10-0f6x-9600000000-711557391093b0d8500a | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Phenylalanine LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positive-QTOF | splash10-00di-0900000000-0c25a5c116eac7bb059b | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Phenylalanine LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positive-QTOF | splash10-00di-0900000000-2804f79084ac4e67e155 | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Phenylalanine LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positive-QTOF | splash10-014i-0900000000-8a71bb1f8424064d7caf | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Phenylalanine LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positive-QTOF | splash10-0f6x-9800000000-e027ff6bb67ce55e80a5 | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Phenylalanine LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positive-QTOF | splash10-014i-0900000000-9f6185e9c7d54189f369 | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Phenylalanine LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Positive-QTOF | splash10-00di-0900000000-df5f72fe2bba91742427 | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Phenylalanine LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negative-QTOF | splash10-0ir3-0988735721-bac229222fe7b52812a8 | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Phenylalanine LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negative-QTOF | splash10-0002-0900000000-453477dec847a3672ffe | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Phenylalanine LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negative-QTOF | splash10-0a4i-0010963000-079a66bf710f6778bceb | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Phenylalanine LC-ESI-ITFT (LTQ Orbitrap XL, Thermo Scientfic) , Negative-QTOF | splash10-00di-0000009000-62dbe98de4ecde484fb3 | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Phenylalanine LC-ESI-QQ (API3000, Applied Biosystems) 10V, Negative-QTOF | splash10-03di-0900000000-80558c17dc1845663c85 | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Phenylalanine LC-ESI-QQ (API3000, Applied Biosystems) 20V, Negative-QTOF | splash10-0002-3900000000-e1ee31d41e48824e84b7 | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Phenylalanine LC-ESI-QQ (API3000, Applied Biosystems) 30V, Negative-QTOF | splash10-0f6x-9500000000-cc11290a37615f24e16e | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Phenylalanine LC-ESI-QQ (API3000, Applied Biosystems) 50V, Negative-QTOF | splash10-0006-9000000000-1a6020bce0e1a9a14832 | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Phenylalanine LC-ESI-QQ (API3000, Applied Biosystems) 40V, Negative-QTOF | splash10-0006-9000000000-38c044a112152626962e | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Phenylalanine LC-ESI-QQ (API3000, Applied Biosystems) 10V, Positive-QTOF | splash10-014i-0900000000-9b908abfcb63153d60b3 | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Phenylalanine LC-ESI-QQ (API3000, Applied Biosystems) 20V, Positive-QTOF | splash10-00di-1900000000-3ba5964e151bb1d56188 | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Phenylalanine LC-ESI-QQ (API3000, Applied Biosystems) 30V, Positive-QTOF | splash10-00di-2900000000-20a7d24da0281f5b3b78 | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Phenylalanine LC-ESI-QQ (API3000, Applied Biosystems) 40V, Positive-QTOF | splash10-0udi-5900000000-1800642a835b49f3398a | 2012-08-31 | HMDB team, MONA | View Spectrum | Experimental LC-MS/MS | LC-MS/MS Spectrum - Phenylalanine LC-ESI-QQ (API3000, Applied Biosystems) 50V, Positive-QTOF | splash10-0fb9-9300000000-f262384c85fb843f8a11 | 2012-08-31 | HMDB team, MONA | View Spectrum |
NMR SpectraSpectrum Type | Description | Deposition Date | Source | View |
---|
Experimental 1D NMR | 1H NMR Spectrum (1D, 500 MHz, H2O, experimental) | 2012-12-04 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 100 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 100 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 1000 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 200 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 200 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 300 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 300 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 400 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 400 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 500 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 500 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 600 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 600 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 700 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 700 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 800 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 800 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 900 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 900 MHz, D2O, predicted) | 2021-09-29 | Wishart Lab | View Spectrum | Experimental 1D NMR | 13C NMR Spectrum (1D, 400 MHz, H2O, experimental) | 2021-10-10 | Wishart Lab | View Spectrum | Experimental 2D NMR | [1H, 13C]-HSQC NMR Spectrum (2D, 600 MHz, H2O, experimental) | 2012-12-05 | Wishart Lab | View Spectrum |
IR SpectraSpectrum Type | Description | Deposition Date | Source | View |
---|
Predicted IR Spectrum | IR Ion Spectrum (Quadrupole Ion Trap, ESI+, Adduct: [M+H]+) | 2022-02-11 | FELIX lab | View Spectrum | Predicted IR Spectrum | IR Ion Spectrum (Quadrupole Ion Trap, ESI-, Adduct: [M-H]-) | 2022-02-11 | FELIX lab | View Spectrum | Predicted IR Spectrum | IR Ion Spectrum (Predicted IRIS Spectrum, Adduct: [M-H]-) | 2023-02-03 | FELIX lab | View Spectrum | Predicted IR Spectrum | IR Ion Spectrum (Predicted IRIS Spectrum, Adduct: [M+H]+) | 2023-02-03 | FELIX lab | View Spectrum | Predicted IR Spectrum | IR Ion Spectrum (Predicted IRIS Spectrum, Adduct: [M+Na]+) | 2023-02-03 | FELIX lab | View Spectrum |
|
---|
Disease References | Epilepsy |
---|
- Rainesalo S, Keranen T, Palmio J, Peltola J, Oja SS, Saransaari P: Plasma and cerebrospinal fluid amino acids in epileptic patients. Neurochem Res. 2004 Jan;29(1):319-24. [PubMed:14992292 ]
| Dengue fever |
---|
- Klassen P, Furst P, Schulz C, Mazariegos M, Solomons NW: Plasma free amino acid concentrations in healthy Guatemalan adults and in patients with classic dengue. Am J Clin Nutr. 2001 Mar;73(3):647-52. [PubMed:11237944 ]
| Myocardial infarction |
---|
- Wannemacher RW Jr, Klainer AS, Dinterman RE, Beisel WR: The significance and mechanism of an increased serum phenylalanine-tyrosine ratio during infection. Am J Clin Nutr. 1976 Sep;29(9):997-1006. [PubMed:822705 ]
| Maple syrup urine disease |
---|
- Deng C, Shang C, Hu Y, Zhang X: Rapid diagnosis of phenylketonuria and other aminoacidemias by quantitative analysis of amino acids in neonatal blood spots by gas chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2002 Jul 25;775(1):115-20. [PubMed:12101068 ]
| Bacterial infections |
---|
- Wannemacher RW Jr, Klainer AS, Dinterman RE, Beisel WR: The significance and mechanism of an increased serum phenylalanine-tyrosine ratio during infection. Am J Clin Nutr. 1976 Sep;29(9):997-1006. [PubMed:822705 ]
| Viral infection |
---|
- Wannemacher RW Jr, Klainer AS, Dinterman RE, Beisel WR: The significance and mechanism of an increased serum phenylalanine-tyrosine ratio during infection. Am J Clin Nutr. 1976 Sep;29(9):997-1006. [PubMed:822705 ]
| Phenylketonuria |
---|
- Deng C, Shang C, Hu Y, Zhang X: Rapid diagnosis of phenylketonuria and other aminoacidemias by quantitative analysis of amino acids in neonatal blood spots by gas chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2002 Jul 25;775(1):115-20. [PubMed:12101068 ]
- Swarna M, Jyothy A, Usha Rani P, Reddy PP: Amino acid disorders in mental retardation: a two-decade study from Andhra Pradesh. Biochem Genet. 2004 Apr;42(3-4):85-98. [PubMed:15168722 ]
| Alzheimer's disease |
---|
- Fonteh AN, Harrington RJ, Tsai A, Liao P, Harrington MG: Free amino acid and dipeptide changes in the body fluids from Alzheimer's disease subjects. Amino Acids. 2007 Feb;32(2):213-24. Epub 2006 Oct 10. [PubMed:17031479 ]
- Tsuruoka M, Hara J, Hirayama A, Sugimoto M, Soga T, Shankle WR, Tomita M: Capillary electrophoresis-mass spectrometry-based metabolome analysis of serum and saliva from neurodegenerative dementia patients. Electrophoresis. 2013 Oct;34(19):2865-72. doi: 10.1002/elps.201300019. Epub 2013 Sep 6. [PubMed:23857558 ]
| Early preeclampsia |
---|
- Bahado-Singh RO, Akolekar R, Mandal R, Dong E, Xia J, Kruger M, Wishart DS, Nicolaides K: Metabolomics and first-trimester prediction of early-onset preeclampsia. J Matern Fetal Neonatal Med. 2012 Oct;25(10):1840-7. doi: 10.3109/14767058.2012.680254. Epub 2012 Apr 28. [PubMed:22494326 ]
| Pregnancy |
---|
- Bahado-Singh RO, Akolekar R, Mandal R, Dong E, Xia J, Kruger M, Wishart DS, Nicolaides K: Metabolomics and first-trimester prediction of early-onset preeclampsia. J Matern Fetal Neonatal Med. 2012 Oct;25(10):1840-7. doi: 10.3109/14767058.2012.680254. Epub 2012 Apr 28. [PubMed:22494326 ]
- Bahado-Singh RO, Akolekar R, Mandal R, Dong E, Xia J, Kruger M, Wishart DS, Nicolaides K: First-trimester metabolomic detection of late-onset preeclampsia. Am J Obstet Gynecol. 2013 Jan;208(1):58.e1-7. doi: 10.1016/j.ajog.2012.11.003. Epub 2012 Nov 13. [PubMed:23159745 ]
- Bahado-Singh RO, Akolekar R, Mandal R, Dong E, Xia J, Kruger M, Wishart DS, Nicolaides K: Metabolomic analysis for first-trimester Down syndrome prediction. Am J Obstet Gynecol. 2013 May;208(5):371.e1-8. doi: 10.1016/j.ajog.2012.12.035. Epub 2013 Jan 8. [PubMed:23313728 ]
- Bahado-Singh RO, Akolekar R, Chelliah A, Mandal R, Dong E, Kruger M, Wishart DS, Nicolaides K: Metabolomic analysis for first-trimester trisomy 18 detection. Am J Obstet Gynecol. 2013 Jul;209(1):65.e1-9. doi: 10.1016/j.ajog.2013.03.028. Epub 2013 Mar 25. [PubMed:23535240 ]
- Bahado-Singh RO, Ertl R, Mandal R, Bjorndahl TC, Syngelaki A, Han B, Dong E, Liu PB, Alpay-Savasan Z, Wishart DS, Nicolaides KH: Metabolomic prediction of fetal congenital heart defect in the first trimester. Am J Obstet Gynecol. 2014 Sep;211(3):240.e1-240.e14. doi: 10.1016/j.ajog.2014.03.056. Epub 2014 Apr 1. [PubMed:24704061 ]
| Late-onset preeclampsia |
---|
- Bahado-Singh RO, Akolekar R, Mandal R, Dong E, Xia J, Kruger M, Wishart DS, Nicolaides K: First-trimester metabolomic detection of late-onset preeclampsia. Am J Obstet Gynecol. 2013 Jan;208(1):58.e1-7. doi: 10.1016/j.ajog.2012.11.003. Epub 2012 Nov 13. [PubMed:23159745 ]
| Obesity |
---|
- Simone Wahl, Christina Holzapfel, Zhonghao Yu, Michaela Breier, Ivan Kondofersky, Christiane Fuchs, Paula Singmann, Cornelia Prehn, Jerzy Adamski, Harald Grallert, Thomas Illig, Rui Wang-Sattler, Thomas Reinehr (2013). Metabolomics reveals determinants of weight loss during lifestyle intervention in obese children. Metabolomics.
| Pterin-4a carbinolamine dehydratase deficiency |
---|
- Blaskovics M, Giudici TA: A new variant of biopterin deficiency. N Engl J Med. 1988 Dec 15;319(24):1611-2. doi: 10.1056/NEJM198812153192420. [PubMed:3200274 ]
| Guanosine triphosphate cyclohydrolase deficiency |
---|
- Dhondt JL, Farriaux JP, Boudha A, Largilliere C, Ringel J, Roger MM, Leeming RJ: Neonatal hyperphenylalaninemia presumably caused by guanosine triphosphate-cyclohydrolase deficiency. J Pediatr. 1985 Jun;106(6):954-6. [PubMed:3873535 ]
| 6-Pyruvoyltetrahydropterin synthase deficiency |
---|
- Thony B, Leimbacher W, Blau N, Harvie A, Heizmann CW: Hyperphenylalaninemia due to defects in tetrahydrobiopterin metabolism: molecular characterization of mutations in 6-pyruvoyl-tetrahydropterin synthase. Am J Hum Genet. 1994 May;54(5):782-92. [PubMed:8178819 ]
| Sepsis |
---|
- Ferrario M, Cambiaghi A, Brunelli L, Giordano S, Caironi P, Guatteri L, Raimondi F, Gattinoni L, Latini R, Masson S, Ristagno G, Pastorelli R: Mortality prediction in patients with severe septic shock: a pilot study using a target metabolomics approach. Sci Rep. 2016 Feb 5;6:20391. doi: 10.1038/srep20391. [PubMed:26847922 ]
| Hypothyroidism |
---|
- Sjoberg S, Eriksson M, Nordin C: L-thyroxine treatment and neurotransmitter levels in the cerebrospinal fluid of hypothyroid patients: a pilot study. Eur J Endocrinol. 1998 Nov;139(5):493-7. [PubMed:9849813 ]
| Leukemia |
---|
- Peng CT, Wu KH, Lan SJ, Tsai JJ, Tsai FJ, Tsai CH: Amino acid concentrations in cerebrospinal fluid in children with acute lymphoblastic leukemia undergoing chemotherapy. Eur J Cancer. 2005 May;41(8):1158-63. Epub 2005 Apr 14. [PubMed:15911239 ]
| Schizophrenia |
---|
- Do KQ, Lauer CJ, Schreiber W, Zollinger M, Gutteck-Amsler U, Cuenod M, Holsboer F: gamma-Glutamylglutamine and taurine concentrations are decreased in the cerebrospinal fluid of drug-naive patients with schizophrenic disorders. J Neurochem. 1995 Dec;65(6):2652-62. [PubMed:7595563 ]
- Bjerkenstedt L, Edman G, Hagenfeldt L, Sedvall G, Wiesel FA: Plasma amino acids in relation to cerebrospinal fluid monoamine metabolites in schizophrenic patients and healthy controls. Br J Psychiatry. 1985 Sep;147:276-82. [PubMed:2415198 ]
| Irritable bowel syndrome |
---|
- Le Gall G, Noor SO, Ridgway K, Scovell L, Jamieson C, Johnson IT, Colquhoun IJ, Kemsley EK, Narbad A: Metabolomics of fecal extracts detects altered metabolic activity of gut microbiota in ulcerative colitis and irritable bowel syndrome. J Proteome Res. 2011 Sep 2;10(9):4208-18. doi: 10.1021/pr2003598. Epub 2011 Aug 8. [PubMed:21761941 ]
- Hong YS, Hong KS, Park MH, Ahn YT, Lee JH, Huh CS, Lee J, Kim IK, Hwang GS, Kim JS: Metabonomic understanding of probiotic effects in humans with irritable bowel syndrome. J Clin Gastroenterol. 2011 May-Jun;45(5):415-25. doi: 10.1097/MCG.0b013e318207f76c. [PubMed:21494186 ]
| Ulcerative colitis |
---|
- Le Gall G, Noor SO, Ridgway K, Scovell L, Jamieson C, Johnson IT, Colquhoun IJ, Kemsley EK, Narbad A: Metabolomics of fecal extracts detects altered metabolic activity of gut microbiota in ulcerative colitis and irritable bowel syndrome. J Proteome Res. 2011 Sep 2;10(9):4208-18. doi: 10.1021/pr2003598. Epub 2011 Aug 8. [PubMed:21761941 ]
- Bjerrum JT, Wang Y, Hao F, Coskun M, Ludwig C, Gunther U, Nielsen OH: Metabonomics of human fecal extracts characterize ulcerative colitis, Crohn's disease and healthy individuals. Metabolomics. 2015;11:122-133. Epub 2014 Jun 1. [PubMed:25598765 ]
- Kolho KL, Pessia A, Jaakkola T, de Vos WM, Velagapudi V: Faecal and Serum Metabolomics in Paediatric Inflammatory Bowel Disease. J Crohns Colitis. 2017 Mar 1;11(3):321-334. doi: 10.1093/ecco-jcc/jjw158. [PubMed:27609529 ]
- Azario I, Pievani A, Del Priore F, Antolini L, Santi L, Corsi A, Cardinale L, Sawamoto K, Kubaski F, Gentner B, Bernardo ME, Valsecchi MG, Riminucci M, Tomatsu S, Aiuti A, Biondi A, Serafini M: Neonatal umbilical cord blood transplantation halts skeletal disease progression in the murine model of MPS-I. Sci Rep. 2017 Aug 25;7(1):9473. doi: 10.1038/s41598-017-09958-9. [PubMed:28842642 ]
| Colorectal cancer |
---|
- Weir TL, Manter DK, Sheflin AM, Barnett BA, Heuberger AL, Ryan EP: Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults. PLoS One. 2013 Aug 6;8(8):e70803. doi: 10.1371/journal.pone.0070803. Print 2013. [PubMed:23940645 ]
- Ni Y, Xie G, Jia W: Metabonomics of human colorectal cancer: new approaches for early diagnosis and biomarker discovery. J Proteome Res. 2014 Sep 5;13(9):3857-70. doi: 10.1021/pr500443c. Epub 2014 Aug 14. [PubMed:25105552 ]
- Brown DG, Rao S, Weir TL, O'Malia J, Bazan M, Brown RJ, Ryan EP: Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab. 2016 Jun 6;4:11. doi: 10.1186/s40170-016-0151-y. eCollection 2016. [PubMed:27275383 ]
- Sinha R, Ahn J, Sampson JN, Shi J, Yu G, Xiong X, Hayes RB, Goedert JJ: Fecal Microbiota, Fecal Metabolome, and Colorectal Cancer Interrelations. PLoS One. 2016 Mar 25;11(3):e0152126. doi: 10.1371/journal.pone.0152126. eCollection 2016. [PubMed:27015276 ]
- Goedert JJ, Sampson JN, Moore SC, Xiao Q, Xiong X, Hayes RB, Ahn J, Shi J, Sinha R: Fecal metabolomics: assay performance and association with colorectal cancer. Carcinogenesis. 2014 Sep;35(9):2089-96. doi: 10.1093/carcin/bgu131. Epub 2014 Jul 18. [PubMed:25037050 ]
- Wang X, Wang J, Rao B, Deng L: Gut flora profiling and fecal metabolite composition of colorectal cancer patients and healthy individuals. Exp Ther Med. 2017 Jun;13(6):2848-2854. doi: 10.3892/etm.2017.4367. Epub 2017 Apr 20. [PubMed:28587349 ]
| Autism |
---|
- De Angelis M, Piccolo M, Vannini L, Siragusa S, De Giacomo A, Serrazzanetti DI, Cristofori F, Guerzoni ME, Gobbetti M, Francavilla R: Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS One. 2013 Oct 9;8(10):e76993. doi: 10.1371/journal.pone.0076993. eCollection 2013. [PubMed:24130822 ]
| Crohn's disease |
---|
- Bjerrum JT, Wang Y, Hao F, Coskun M, Ludwig C, Gunther U, Nielsen OH: Metabonomics of human fecal extracts characterize ulcerative colitis, Crohn's disease and healthy individuals. Metabolomics. 2015;11:122-133. Epub 2014 Jun 1. [PubMed:25598765 ]
- Kolho KL, Pessia A, Jaakkola T, de Vos WM, Velagapudi V: Faecal and Serum Metabolomics in Paediatric Inflammatory Bowel Disease. J Crohns Colitis. 2017 Mar 1;11(3):321-334. doi: 10.1093/ecco-jcc/jjw158. [PubMed:27609529 ]
- Azario I, Pievani A, Del Priore F, Antolini L, Santi L, Corsi A, Cardinale L, Sawamoto K, Kubaski F, Gentner B, Bernardo ME, Valsecchi MG, Riminucci M, Tomatsu S, Aiuti A, Biondi A, Serafini M: Neonatal umbilical cord blood transplantation halts skeletal disease progression in the murine model of MPS-I. Sci Rep. 2017 Aug 25;7(1):9473. doi: 10.1038/s41598-017-09958-9. [PubMed:28842642 ]
| Gout |
---|
- Shao T, Shao L, Li H, Xie Z, He Z, Wen C: Combined Signature of the Fecal Microbiome and Metabolome in Patients with Gout. Front Microbiol. 2017 Feb 21;8:268. doi: 10.3389/fmicb.2017.00268. eCollection 2017. [PubMed:28270806 ]
| Rheumatoid arthritis |
---|
- Tie-juan ShaoZhi-xing HeZhi-jun XieHai-chang LiMei-jiao WangCheng-ping Wen. Characterization of ankylosing spondylitis and rheumatoid arthritis using 1H NMR-based metabolomics of human fecal extracts. Metabolomics. April 2016, 12:70 [Link]
| Perillyl alcohol administration for cancer treatment |
---|
- Sugimoto M, Wong DT, Hirayama A, Soga T, Tomita M: Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics. 2010 Mar;6(1):78-95. Epub 2009 Sep 10. [PubMed:20300169 ]
| Pancreatic cancer |
---|
- Sugimoto M, Wong DT, Hirayama A, Soga T, Tomita M: Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics. 2010 Mar;6(1):78-95. Epub 2009 Sep 10. [PubMed:20300169 ]
| Periodontal disease |
---|
- Sugimoto M, Wong DT, Hirayama A, Soga T, Tomita M: Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics. 2010 Mar;6(1):78-95. Epub 2009 Sep 10. [PubMed:20300169 ]
| Frontotemporal dementia |
---|
- Tsuruoka M, Hara J, Hirayama A, Sugimoto M, Soga T, Shankle WR, Tomita M: Capillary electrophoresis-mass spectrometry-based metabolome analysis of serum and saliva from neurodegenerative dementia patients. Electrophoresis. 2013 Oct;34(19):2865-72. doi: 10.1002/elps.201300019. Epub 2013 Sep 6. [PubMed:23857558 ]
| Lewy body disease |
---|
- Tsuruoka M, Hara J, Hirayama A, Sugimoto M, Soga T, Shankle WR, Tomita M: Capillary electrophoresis-mass spectrometry-based metabolome analysis of serum and saliva from neurodegenerative dementia patients. Electrophoresis. 2013 Oct;34(19):2865-72. doi: 10.1002/elps.201300019. Epub 2013 Sep 6. [PubMed:23857558 ]
| Attachment loss |
---|
- Liebsch C, Pitchika V, Pink C, Samietz S, Kastenmuller G, Artati A, Suhre K, Adamski J, Nauck M, Volzke H, Friedrich N, Kocher T, Holtfreter B, Pietzner M: The Saliva Metabolome in Association to Oral Health Status. J Dent Res. 2019 Jun;98(6):642-651. doi: 10.1177/0022034519842853. Epub 2019 Apr 26. [PubMed:31026179 ]
| Periodontal Probing Depth |
---|
- Liebsch C, Pitchika V, Pink C, Samietz S, Kastenmuller G, Artati A, Suhre K, Adamski J, Nauck M, Volzke H, Friedrich N, Kocher T, Holtfreter B, Pietzner M: The Saliva Metabolome in Association to Oral Health Status. J Dent Res. 2019 Jun;98(6):642-651. doi: 10.1177/0022034519842853. Epub 2019 Apr 26. [PubMed:31026179 ]
| Eosinophilic esophagitis |
---|
- Slae, M., Huynh, H., Wishart, D.S. (2014). Analysis of 30 normal pediatric urine samples via NMR spectroscopy (unpublished work). NA.
|
|
---|
General References | - Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009 Feb 12;457(7231):910-4. doi: 10.1038/nature07762. [PubMed:19212411 ]
- Silwood CJ, Lynch E, Claxson AW, Grootveld MC: 1H and (13)C NMR spectroscopic analysis of human saliva. J Dent Res. 2002 Jun;81(6):422-7. [PubMed:12097436 ]
- Nicholson JK, O'Flynn MP, Sadler PJ, Macleod AF, Juul SM, Sonksen PH: Proton-nuclear-magnetic-resonance studies of serum, plasma and urine from fasting normal and diabetic subjects. Biochem J. 1984 Jan 15;217(2):365-75. [PubMed:6696735 ]
- Engelborghs S, Marescau B, De Deyn PP: Amino acids and biogenic amines in cerebrospinal fluid of patients with Parkinson's disease. Neurochem Res. 2003 Aug;28(8):1145-50. [PubMed:12834252 ]
- Sjoberg S, Eriksson M, Nordin C: L-thyroxine treatment and neurotransmitter levels in the cerebrospinal fluid of hypothyroid patients: a pilot study. Eur J Endocrinol. 1998 Nov;139(5):493-7. [PubMed:9849813 ]
- Hagenfeldt L, Bjerkenstedt L, Edman G, Sedvall G, Wiesel FA: Amino acids in plasma and CSF and monoamine metabolites in CSF: interrelationship in healthy subjects. J Neurochem. 1984 Mar;42(3):833-7. [PubMed:6198473 ]
- Peng CT, Wu KH, Lan SJ, Tsai JJ, Tsai FJ, Tsai CH: Amino acid concentrations in cerebrospinal fluid in children with acute lymphoblastic leukemia undergoing chemotherapy. Eur J Cancer. 2005 May;41(8):1158-63. Epub 2005 Apr 14. [PubMed:15911239 ]
- Cynober LA: Plasma amino acid levels with a note on membrane transport: characteristics, regulation, and metabolic significance. Nutrition. 2002 Sep;18(9):761-6. [PubMed:12297216 ]
- Rainesalo S, Keranen T, Palmio J, Peltola J, Oja SS, Saransaari P: Plasma and cerebrospinal fluid amino acids in epileptic patients. Neurochem Res. 2004 Jan;29(1):319-24. [PubMed:14992292 ]
- Deng C, Shang C, Hu Y, Zhang X: Rapid diagnosis of phenylketonuria and other aminoacidemias by quantitative analysis of amino acids in neonatal blood spots by gas chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2002 Jul 25;775(1):115-20. [PubMed:12101068 ]
- Wannemacher RW Jr, Klainer AS, Dinterman RE, Beisel WR: The significance and mechanism of an increased serum phenylalanine-tyrosine ratio during infection. Am J Clin Nutr. 1976 Sep;29(9):997-1006. [PubMed:822705 ]
- Doellgast GJ, Meis PJ: Use of specific inhibitors to disciminate alkaline phosphatase isoenzymes originating from human liver, placenta and intestine: absence of meconial alkaline phosphatase in maternal serum. Clin Chem. 1979 Jul;25(7):1230-3. [PubMed:455643 ]
- Kersemans V, Cornelissen B, Kersemans K, Bauwens M, Achten E, Dierckx RA, Mertens J, Slegers G: In vivo characterization of 123/125I-2-iodo-L-phenylalanine in an R1M rhabdomyosarcoma athymic mouse model as a potential tumor tracer for SPECT. J Nucl Med. 2005 Mar;46(3):532-9. [PubMed:15750170 ]
- Klassen P, Furst P, Schulz C, Mazariegos M, Solomons NW: Plasma free amino acid concentrations in healthy Guatemalan adults and in patients with classic dengue. Am J Clin Nutr. 2001 Mar;73(3):647-52. [PubMed:11237944 ]
- van Spronsen FJ, Hoeksma M, Reijngoud DJ: Brain dysfunction in phenylketonuria: is phenylalanine toxicity the only possible cause? J Inherit Metab Dis. 2009 Feb;32(1):46-51. doi: 10.1007/s10545-008-0946-2. Epub 2009 Jan 13. [PubMed:19191004 ]
- Adler-Abramovich L, Vaks L, Carny O, Trudler D, Magno A, Caflisch A, Frenkel D, Gazit E: Phenylalanine assembly into toxic fibrils suggests amyloid etiology in phenylketonuria. Nat Chem Biol. 2012 Aug;8(8):701-6. doi: 10.1038/nchembio.1002. Epub 2012 Jun 17. [PubMed:22706200 ]
- Elshenawy S, Pinney SE, Stuart T, Doulias PT, Zura G, Parry S, Elovitz MA, Bennett MJ, Bansal A, Strauss JF 3rd, Ischiropoulos H, Simmons RA: The Metabolomic Signature of the Placenta in Spontaneous Preterm Birth. Int J Mol Sci. 2020 Feb 4;21(3). pii: ijms21031043. doi: 10.3390/ijms21031043. [PubMed:32033212 ]
- Huang SS, Lin JY, Chen WS, Liu MH, Cheng CW, Cheng ML, Wang CH: Phenylalanine- and leucine-defined metabolic types identify high mortality risk in patients with severe infection. Int J Infect Dis. 2019 Aug;85:143-149. doi: 10.1016/j.ijid.2019.05.030. Epub 2019 Jun 3. [PubMed:31170548 ]
- Chen WS, Wang CH, Cheng CW, Liu MH, Chu CM, Wu HP, Huang PC, Lin YT, Ko T, Chen WH, Wang HJ, Lee SC, Liang CY: Elevated plasma phenylalanine predicts mortality in critical patients with heart failure. ESC Heart Fail. 2020 Oct;7(5):2884-2893. doi: 10.1002/ehf2.12896. Epub 2020 Jul 2. [PubMed:32618142 ]
- Freund HR, Ryan JA Jr, Fischer JE: Amino acid derangements in patients with sepsis: treatment with branched chain amino acid rich infusions. Ann Surg. 1978 Sep;188(3):423-30. doi: 10.1097/00000658-197809000-00017. [PubMed:99098 ]
- Knuplez E, Marsche G: An Updated Review of Pro- and Anti-Inflammatory Properties of Plasma Lysophosphatidylcholines in the Vascular System. Int J Mol Sci. 2020 Jun 24;21(12). pii: ijms21124501. doi: 10.3390/ijms21124501. [PubMed:32599910 ]
- Cannet C, Bayat A, Frauendienst-Egger G, Freisinger P, Spraul M, Himmelreich N, Kockaya M, Ahring K, Godejohann M, MacDonald A, Trefz F: Phenylketonuria (PKU) Urinary Metabolomic Phenotype Is Defined by Genotype and Metabolite Imbalance: Results in 51 Early Treated Patients Using Ex Vivo (1)H-NMR Analysis. Molecules. 2023 Jun 22;28(13):4916. doi: 10.3390/molecules28134916. [PubMed:37446577 ]
|
---|