Record Information |
---|
Version | 5.0 |
---|
Status | Detected and Quantified |
---|
Creation Date | 2005-11-16 15:48:42 UTC |
---|
Update Date | 2021-09-14 15:47:20 UTC |
---|
HMDB ID | HMDB0001211 |
---|
Secondary Accession Numbers | |
---|
Metabolite Identification |
---|
Common Name | Diadenosine tetraphosphate |
---|
Description | Diadenosine tetraphosphate (AP4A) is a diadenosine polyphosphate. Diadenosine polyphosphates (APnAs, n=3-6) are a family of endogenous vasoactive purine dinucleotides which have been isolated from thrombocytes. APnAs have been demonstrated to be involved in the control of vascular tone as well as the growth of vascular smooth muscle cells and hence, possibly, in atherogenesis. APnAs isolated substances are Ap3A, Ap4A, Ap5A, and Ap6A. APnAs are naturally occurring substances that facilitate tear secretion; they are released from the corneal epithelium, they stimulate tear production and therefore they may be considered as physiological modulators of tear secretion. The APnAs were discovered in the mid-sixties in the course of studies on aminoacyl-tRNA synthetases (aaRS). APnAs have emerged as intracellular and extracellular signalling molecules implicated in the maintenance and regulation of vital cellular functions and become considered as second messengers. Great variety of physiological and pathological effects in mammalian cells was found to be associated with alterations of APnAs. APnAs are polyphosphated nucleotidic substances which are found in the CNS and are known to be released in a calcium-dependent manner from storage vesicles in brain synaptosomes. AP5A is a specific adenylate kinase inhibitor in the hippocampus, decreasing the rate of decomposition of ADP and the formation of ATP; a pathway that influences the availability of purines in the central nervous system. AP4A is the only APnA that can induce a considerable increase in [Ca2+] in endothelial cells, indicating that its vasoactive effects are comparable to the known effects of arginine vasopressin, Angiotensin II, and ATP. AP4A is a ubiquitous ApnA is a signal molecule for DNA replication in mammalian cells. AP4A is a primer for oligoadenylate synthesis catalyzed by interferon-inducible 2-5A synthetase. AP4A is an avid inhibitor of eosinophil-derived neurotoxin (EDN). EDN is a catalytically proficient member of the pancreatic ribonuclease superfamily secreted along with other eosinophil granule proteins during innate host defense responses and various eosinophil-related inflammatory and allergic diseases. The ribonucleolytic activity of EDN is central to its antiviral and neurotoxic activities and possibly to other facets of its biological activity. (PMID: 11212966 , 12738682 , 11810214 , 9607303 , 8922753 , 9187362 , 16401072 , 9694344 , 9351706 , 1953194 ). |
---|
Structure | NC1=C2N=CN([C@@H]3O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(=O)OP(O)(=O)OC[C@H]4O[C@H]([C@H](O)[C@@H]4O)N4C=NC5=C(N)N=CN=C45)[C@@H](O)[C@H]3O)C2=NC=N1 InChI=1S/C20H28N10O19P4/c21-15-9-17(25-3-23-15)29(5-27-9)19-13(33)11(31)7(45-19)1-43-50(35,36)47-52(39,40)49-53(41,42)48-51(37,38)44-2-8-12(32)14(34)20(46-8)30-6-28-10-16(22)24-4-26-18(10)30/h3-8,11-14,19-20,31-34H,1-2H2,(H,35,36)(H,37,38)(H,39,40)(H,41,42)(H2,21,23,25)(H2,22,24,26)/t7-,8-,11-,12-,13-,14-,19-,20-/m1/s1 |
---|
Synonyms | Value | Source |
---|
(PpA)2 | ChEBI | a(5')P4(5')a | ChEBI | AppppA | ChEBI | Bis(5'-adenylyl) diphosphate | ChEBI | P1,P4-Bis(5'-adenosyl) tetraphosphate | ChEBI | Bis(5'-adenylyl) diphosphoric acid | Generator | P1,P4-Bis(5'-adenosyl) tetraphosphoric acid | Generator | Diadenosine tetraphosphoric acid | Generator | 5',5'''-diadenosine tetraphosphate | HMDB | Adenosine 5'-tetraphosphate, 5'-ester with adenosine | HMDB | Adenosine-(5')-tetraphospho-(5')-adenosine | HMDB | Diadenosine 5',5'''-P1,P4-tetraphosphate | HMDB | P1,P4-Di(adenosin-5'-yl)tetraphosphate | HMDB | P1,P4-Diadenosine-5'-tetraphosphate | HMDB | Ap4a | MeSH, HMDB | P(1), P(4)-Diadenosine-5'tetraphosphate | MeSH, HMDB | Diadenosine 5',5'''-P(1),P(4)--tetraphosphate | MeSH, HMDB | Adenosine(5')tetraphospho(5')adenosine | MeSH, HMDB | Bis(5'-adenosyl)tetraphosphate | MeSH, HMDB | P1,P4-Bis(5'-adenosyl)tetraphosphoric acid | Generator, HMDB | Diadenosine tetraphosphate | MeSH | p(1),p(4)-Bis(5'-adenosyl) tetraphosphoric acid | Generator, HMDB |
|
---|
Chemical Formula | C20H28N10O19P4 |
---|
Average Molecular Weight | 836.387 |
---|
Monoisotopic Molecular Weight | 836.048264812 |
---|
IUPAC Name | [({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)phosphinic acid |
---|
Traditional Name | appppa |
---|
CAS Registry Number | 5542-28-9 |
---|
SMILES | NC1=C2N=CN([C@@H]3O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(=O)OP(O)(=O)OC[C@H]4O[C@H]([C@H](O)[C@@H]4O)N4C=NC5=C(N)N=CN=C45)[C@@H](O)[C@H]3O)C2=NC=N1 |
---|
InChI Identifier | InChI=1S/C20H28N10O19P4/c21-15-9-17(25-3-23-15)29(5-27-9)19-13(33)11(31)7(45-19)1-43-50(35,36)47-52(39,40)49-53(41,42)48-51(37,38)44-2-8-12(32)14(34)20(46-8)30-6-28-10-16(22)24-4-26-18(10)30/h3-8,11-14,19-20,31-34H,1-2H2,(H,35,36)(H,37,38)(H,39,40)(H,41,42)(H2,21,23,25)(H2,22,24,26)/t7-,8-,11-,12-,13-,14-,19-,20-/m1/s1 |
---|
InChI Key | YOAHKNVSNCMZGQ-XPWFQUROSA-N |
---|
Chemical Taxonomy |
---|
Description | Belongs to the class of organic compounds known as (5'->5')-dinucleotides. These are dinucleotides where the two bases are connected via a (5'->5')-phosphodiester linkage. |
---|
Kingdom | Organic compounds |
---|
Super Class | Nucleosides, nucleotides, and analogues |
---|
Class | (5'->5')-dinucleotides |
---|
Sub Class | Not Available |
---|
Direct Parent | (5'->5')-dinucleotides |
---|
Alternative Parents | |
---|
Substituents | - (5'->5')-dinucleotide
- Purine ribonucleoside polyphosphate
- Purine nucleotide sugar
- Purine ribonucleoside monophosphate
- Pentose phosphate
- Pentose-5-phosphate
- Glycosyl compound
- N-glycosyl compound
- 6-aminopurine
- Monosaccharide phosphate
- Purine
- Imidazopyrimidine
- Monoalkyl phosphate
- Aminopyrimidine
- Alkyl phosphate
- Monosaccharide
- N-substituted imidazole
- Organic phosphoric acid derivative
- Pyrimidine
- Phosphoric acid ester
- Imidolactam
- Tetrahydrofuran
- Imidazole
- Azole
- Heteroaromatic compound
- Secondary alcohol
- Azacycle
- Oxacycle
- Organoheterocyclic compound
- Hydrocarbon derivative
- Alcohol
- Organonitrogen compound
- Organooxygen compound
- Organic oxygen compound
- Organic nitrogen compound
- Organopnictogen compound
- Organic oxide
- Amine
- Primary amine
- Aromatic heteropolycyclic compound
|
---|
Molecular Framework | Aromatic heteropolycyclic compounds |
---|
External Descriptors | |
---|
Ontology |
---|
Physiological effect | |
---|
Disposition | |
---|
Process | Not Available |
---|
Role | Not Available |
---|
Physical Properties |
---|
State | Solid |
---|
Experimental Molecular Properties | Property | Value | Reference |
---|
Melting Point | Not Available | Not Available | Boiling Point | Not Available | Not Available | Water Solubility | Not Available | Not Available | LogP | -1.475 | Not Available |
|
---|
Experimental Chromatographic Properties | Experimental Collision Cross Sections |
---|
Predicted Molecular Properties | |
---|
Predicted Chromatographic Properties | Predicted Collision Cross SectionsPredicted Kovats Retention IndicesUnderivatized |
---|
Spectra |
---|
| GC-MS SpectraSpectrum Type | Description | Splash Key | Deposition Date | Source | View |
---|
MS | Mass Spectrum (Electron Ionization) | Not Available | 2022-08-06 | Not Available | View Spectrum |
MS/MS SpectraSpectrum Type | Description | Splash Key | Deposition Date | Source | View |
---|
Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Diadenosine tetraphosphate 10V, Positive-QTOF | splash10-000i-0910200030-f62591a77764336369ca | 2015-09-15 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Diadenosine tetraphosphate 20V, Positive-QTOF | splash10-000i-0900000000-f3c88b3e116ab3d6c1b4 | 2015-09-15 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Diadenosine tetraphosphate 40V, Positive-QTOF | splash10-000i-0900000000-ed94ad304e91a867ff3b | 2015-09-15 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Diadenosine tetraphosphate 10V, Negative-QTOF | splash10-0019-0700020090-f52e6941bbc750fe0e76 | 2015-09-15 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Diadenosine tetraphosphate 20V, Negative-QTOF | splash10-001i-0900010000-dd233557a62d77a1406b | 2015-09-15 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Diadenosine tetraphosphate 40V, Negative-QTOF | splash10-001i-1915110000-741bdaae70092f502b8e | 2015-09-15 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Diadenosine tetraphosphate 10V, Positive-QTOF | splash10-000i-0100000090-0703d63dcb1429245411 | 2021-09-24 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Diadenosine tetraphosphate 20V, Positive-QTOF | splash10-000i-0300002090-89e8cc71cfb144d0f8b6 | 2021-09-24 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Diadenosine tetraphosphate 40V, Positive-QTOF | splash10-000i-0900101000-4b74d668fd588964dfd6 | 2021-09-24 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Diadenosine tetraphosphate 10V, Negative-QTOF | splash10-000i-0000000090-bc4ce7d28b2ff5fc83e9 | 2021-09-24 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Diadenosine tetraphosphate 20V, Negative-QTOF | splash10-000i-0201132090-cd2f5d95fa2a2c4f170a | 2021-09-24 | Wishart Lab | View Spectrum | Predicted LC-MS/MS | Predicted LC-MS/MS Spectrum - Diadenosine tetraphosphate 40V, Negative-QTOF | splash10-0a4r-0410920120-5c5c92a5ab82e5e045d2 | 2021-09-24 | Wishart Lab | View Spectrum |
NMR SpectraSpectrum Type | Description | Deposition Date | Source | View |
---|
Predicted 1D NMR | 13C NMR Spectrum (1D, 100 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 100 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 200 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 200 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 300 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 300 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 400 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 400 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 500 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 500 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 600 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 600 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 700 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 700 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 800 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 800 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 900 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 900 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 13C NMR Spectrum (1D, 1000 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum | Predicted 1D NMR | 1H NMR Spectrum (1D, 1000 MHz, D2O, predicted) | 2021-09-16 | Wishart Lab | View Spectrum |
|
---|
Biological Properties |
---|
Cellular Locations | Not Available |
---|
Biospecimen Locations | |
---|
Tissue Locations | Not Available |
---|
Pathways | |
---|
Normal Concentrations |
---|
| Not Available |
---|
Abnormal Concentrations |
---|
| |
Blood | Detected and Quantified | 0.54 +/- 0.31 uM | Adult (>18 years old) | Both | Hemodialysis | | details |
|
---|
Associated Disorders and Diseases |
---|
Disease References | Hemodialysis |
---|
- Jankowski J, Jankowski V, Laufer U, van der Giet M, Henning L, Tepel M, Zidek W, Schluter H: Identification and quantification of diadenosine polyphosphate concentrations in human plasma. Arterioscler Thromb Vasc Biol. 2003 Jul 1;23(7):1231-8. Epub 2003 May 8. [PubMed:12738682 ]
|
|
---|
Associated OMIM IDs | None |
---|
External Links |
---|
DrugBank ID | Not Available |
---|
Phenol Explorer Compound ID | Not Available |
---|
FooDB ID | FDB022492 |
---|
KNApSAcK ID | Not Available |
---|
Chemspider ID | 20402 |
---|
KEGG Compound ID | C01260 |
---|
BioCyc ID | Not Available |
---|
BiGG ID | Not Available |
---|
Wikipedia Link | Ap4A |
---|
METLIN ID | Not Available |
---|
PubChem Compound | 21706 |
---|
PDB ID | Not Available |
---|
ChEBI ID | 17422 |
---|
Food Biomarker Ontology | Not Available |
---|
VMH ID | AP4A |
---|
MarkerDB ID | Not Available |
---|
Good Scents ID | Not Available |
---|
References |
---|
Synthesis Reference | Not Available |
---|
Material Safety Data Sheet (MSDS) | Not Available |
---|
General References | - Stiepanow-Trzeciak A, Jankowski M, Angielski S, Szczepanska-Konkel M: P1,P4-diadenosine tetraphosphate (Ap4A) inhibits proximal tubular reabsorption of sodium in rats. Nephron Physiol. 2007;106(1):p13-8. Epub 2007 Apr 2. [PubMed:17406124 ]
- de Korte D, Gouwerok CW, Fijnheer R, Pietersz RN, Roos D: Depletion of dense granule nucleotides during storage of human platelets. Thromb Haemost. 1990 Apr 12;63(2):275-8. [PubMed:2141956 ]
- Hoyle CH: Pharmacological activity of adenine dinucleotides in the periphery: possible receptor classes and transmitter function. Gen Pharmacol. 1990;21(6):827-31. [PubMed:2279683 ]
- Pintor J, Puche JA, Gualix J, Hoyle CH, Miras-Portugal MT: Diadenosine polyphosphates evoke Ca2+ transients in guinea-pig brain via receptors distinct from those for ATP. J Physiol. 1997 Oct 15;504 ( Pt 2):327-35. [PubMed:9365907 ]
- Hourani SM, Bailey SJ, Johnson CR, Tennant JP: Effects of adenosine 5'-triphosphate, uridine 5'-triphosphate, adenosine 5'-tetraphosphate and diadenosine polyphosphates in guinea-pig taenia caeci and rat colon muscularis mucosae. Naunyn Schmiedebergs Arch Pharmacol. 1998 Oct;358(4):464-73. [PubMed:9826069 ]
- van der Giet M, Jankowski J, Schluter H, Zidek W, Tepel M: Mediation of the vasoactive properties of diadenosine tetraphosphate via various purinoceptors. J Hypertens. 1998 Dec;16(12 Pt 2):1939-43. [PubMed:9886880 ]
- Wildman SS, Brown SG, King BF, Burnstock G: Selectivity of diadenosine polyphosphates for rat P2X receptor subunits. Eur J Pharmacol. 1999 Feb 12;367(1):119-23. [PubMed:10082274 ]
- Gualix J, Pintor J, Miras-Portugal MT: Characterization of nucleotide transport into rat brain synaptic vesicles. J Neurochem. 1999 Sep;73(3):1098-104. [PubMed:10461900 ]
- van der Giet M, Khattab M, Borgel J, Schluter H, Zidek W: Differential effects of diadenosine phosphates on purinoceptors in the rat isolated perfused kidney. Br J Pharmacol. 1997 Apr;120(8):1453-60. [PubMed:9113365 ]
- Pirrone AM, Gambino R, Oddo F, Faraci MT, Luparello G, Giudice G: Sea urchin embryos do not synthesize diadenosinetetraphosphate. Exp Cell Res. 1979 Sep;122(2):419-22. [PubMed:510412 ]
- Hollah P, Hausberg M, Kosch M, Barenbrock M, Letzel M, Schlatter E, Rahn KH: A novel assay for determination of diadenosine polyphosphates in human platelets: studies in normotensive subjects and in patients with essential hypertension. J Hypertens. 2001 Feb;19(2):237-45. [PubMed:11212966 ]
- Jankowski J, Schluter H, Tepel M, Spieker C, Zidek W: Effect of diadenosine polyphosphates on Ca2+ ATPase activity. J Mol Med (Berl). 1997 Sep;75(9):674-7. [PubMed:9351706 ]
- Stachon A, Stegemann H, Hohage H, Rahn KH, Schlatter E: Effects of diadenosine polyphosphates on the intracellular Ca2+ concentration in endothelial cells. Cell Physiol Biochem. 1998;8(4):175-84. [PubMed:9694344 ]
- Pintor J, Carracedo G, Alonso MC, Bautista A, Peral A: Presence of diadenosine polyphosphates in human tears. Pflugers Arch. 2002 Jan;443(3):432-6. Epub 2001 Aug 23. [PubMed:11810214 ]
- Jankowski J, Jankowski V, Laufer U, van der Giet M, Henning L, Tepel M, Zidek W, Schluter H: Identification and quantification of diadenosine polyphosphate concentrations in human plasma. Arterioscler Thromb Vasc Biol. 2003 Jul 1;23(7):1231-8. Epub 2003 May 8. [PubMed:12738682 ]
- Kisselev LL, Justesen J, Wolfson AD, Frolova LY: Diadenosine oligophosphates (Ap(n)A), a novel class of signalling molecules? FEBS Lett. 1998 May 8;427(2):157-63. [PubMed:9607303 ]
- Pintor J, King BF, Miras-Portugal MT, Burnstock G: Selectivity and activity of adenine dinucleotides at recombinant P2X2 and P2Y1 purinoceptors. Br J Pharmacol. 1996 Nov;119(5):1006-12. [PubMed:8922753 ]
- Turpaev K, Hartmann R, Kisselev L, Justesen J: Ap3A and Ap4A are primers for oligoadenylate synthesis catalyzed by interferon-inducible 2-5A synthetase. FEBS Lett. 1997 May 19;408(2):177-81. [PubMed:9187362 ]
- Baker MD, Holloway DE, Swaminathan GJ, Acharya KR: Crystal structures of eosinophil-derived neurotoxin (EDN) in complex with the inhibitors 5'-ATP, Ap3A, Ap4A, and Ap5A. Biochemistry. 2006 Jan 17;45(2):416-26. [PubMed:16401072 ]
- Chan PJ, Su BC, Tredway DR: Diadenosine tetraphosphate (Ap4A) and triphosphate (Ap3A) signaling of human sperm motility. Arch Androl. 1991 Sep-Oct;27(2):103-8. [PubMed:1953194 ]
|
---|